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Abstract
Inductive programming approaches typically rely on
an Occamist bias to select hypotheses with minimal
textual complexity. This approach, however, fails
to distinguish between the efficiencies of hypothe-
sised programs, such as merge sort (O(n log n))
and bubble sort (O(n2)). We address this issue by
introducing techniques to learn logic programs with
minimal resource complexity. We describe an algo-
rithm proven to learn minimal resource complexity
robot strategies, and we propose future work to gen-
eralise the approach to a broader class of programs.

1 Introduction
Suppose we are machine learning robot plans from initial/final
state examples. Figure 1 shows a scenario where a robot is
learning to move a ball from square 1/1 to square 3/3. Assume
the robot can move north, south, east, and west, and can grab
and drop the ball, then Figure 2 shows two plans with corre-
sponding Prolog programs for this problem. Both programs
transform the initial state to the final state and both have the
same textual complexity. However, the programs differ in their
efficiencies. Program (a) is inefficient because it involves two
grab and two drop operations, whereas program (b) is efficient
because it requires only one grab and one drop operation.
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(b) Final state

Figure 1: Robot planning example

However, most inductive programming approaches rely on
an Occamist bias to select hypotheses with minimal textual
complexity and cannot distinguish between the efficiencies of
hypothesised programs. Clearly, learning efficient programs
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move(X,Y):-p3(X,Z),p3(Z,Y).
p3(X,Y):-p2(X,Z),drop(Z,Y).
p2(X,Y):-grab(X,Z),p1(Z,Y).
p1(X,Y):-north(X,Z),east(Z,Y).

(a) Inefficient solution
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move(X,Y):-p3(X,Z),drop(Z,Y).
p3(X,Y):-grab(X,Z),p2(Z,Y).
p2(X,Y):-p1(X,Z),p1(Z,Y).
p1(X,Y):-north(X,Z),east(Z,Y).

(b) Efficient solution

Figure 2: Prolog programs for the planning example in Figure
1. A red square denotes a grab action and a green circle
denotes a drop action.

is valuable in many AI domains. For example, if learning to
sort lists, we want to learn an efficient strategy, such as merge
sort (O(n log n)), rather than an inefficient strategy, such
as bubble sort (O(n2)), regardless of their respective textual
complexities.

We address this issue by introducing techniques to learn
minimal resource complexity logic programs. Resource com-
plexity is a generalisation of the notion of time-complexity of
algorithms, in which time is a particular resource. Our main
contribution, thus far, is the introduction of a framework for
minimising the resource complexity of logical robot strategies,
and the demonstration of a learning algorithm proven to learn
minimal resource complexity robot strategies.

2 Related work
Logic-based learning literature has addressed efficiently learn-
ing logic programs [Ahlgren and Yuen, 2013]. Likewise, AI
planning literature has addressed developing efficient planners
[Xing et al., 2006]. By contrast, we want to learn logic pro-
grams which are optimal with respect to an objective function
by which the quality of a hypothesis is measured. A common
objective function, based on Occam’s razor, is the length of the
hypothesis, which in planning is often the number of actions
required to execute a plan. However, if certain actions are
costly, we may prefer a hypothesis which minimises the over-



all cost of the actions. Action costs have been used in answer
set programming to learn optimal plans [Eiter et al., 2003].
By contrast, we want to learn recursive programs, including
recursive robot strategies [Cropper and Muggleton, 2015]. In
contrast to traditional AI planning, which involves the genera-
tion of a plan as a sequence of actions transforming a particular
initial state to a particular final state, a strategy is a potentially
infinite set of plans, applicable to a class of initial/final state
pairs. Although existing approaches support the construction
of strategies [Laird, 2008], we are unaware of any approach
which provides a provable convergent means for finding opti-
mal strategies, nor of any approach which generalises to the
broad class of programs which we propose.

3 Completed work
In [Cropper and Muggleton, 2015], we describe an approach
to learn optimal resource complexity robot strategies based on
the meta-interpretive learning (MIL) framework [Muggleton
et al., 2014; 2015; Cropper and Muggleton, 2016], a form
of inductive logic programming which supports predicate in-
vention and learning recursive theories. A strategy is a logic
program composed of actions and fluents which transforms an
initial state Si to a final state Sj . The resource complexity of
a strategy is defined as follows.

Definition 1 Let e = 〈S1, S2〉 be an example where S1 and
S2 are initial/final states respectively and H a strategy. Then
the resource complexity r(H(e)) is the sum of the action costs
in applying the strategy H to e to transform S1 to S2.

We assume a user-provided function r : Pa → N which de-
fines the resource cost of calling an action p ∈ Pa. In robot
strategies, energy consumption and consumption of materi-
als may be considered as resources. We define the resource
complexity of a strategy over a set of examples.

Definition 2 Let E+ be a set of positive examples. Then the
resource complexity of a strategy H is defined as follows:

r(H,E+) = argmaxe∈E+r(H(e))

To find the minimal resource complexity strategy given a set
of examples, we introduced MetagolO, an implementation
of the MIL framework which uses iterative descent to find
resource optimal strategies. The main idea of iterative descent
is to first find the minimal textual complexity strategy H1,
which is the most tractable to learn because the hypothesis
space is exponential in the solution length [Lin et al., 2014].
The resource complexity r(H1, E

+) of strategy H1 provides
an upper bound from which to descend, i.e. to search for a
more efficient strategy with a resource complexity less than
H1. In [Cropper and Muggleton, 2015], we prove convergence
of this search procedure to resource optimal strategies. Our
experimental results agree with the theoretical optimal predic-
tions and show, for instance, that when learning to sort lists,
MetagolO learns an efficient quick sort strategy, rather than an
inefficient bubble sort strategy.

4 Conclusions and future work
By focusing on robot strategies, we have made an initial at-
tempt at inducing logic programs with optimal resource com-

plexity. We intend to generalise the approach to a broader
class of logic programs and non-logic programs.

In [Cropper and Muggleton, 2015], the resource complexity
of a hypothesised strategy is maintained in the state description.
Each dyadic action has an input state as the first term and an
output state as the second term. Executing a dyadic action
increments the resource cost in the input state to form the
output state. However, predicates in logic programs do not
not necessarily have input and output arguments, for instance
when learning a monadic predicate. Therefore, to generalise
the approach to arbitrary logic programs, we need a more
general representation to calculate the resource complexity.

In addition, we have assumed a user-provided function to
assign resource costs to each robot action. However, such
information is not necessarily available and in future work
we intend to investigate whether we can learn efficient time-
complexity algorithms without user-provided costs.

We believe that the ideas proposed in this paper open ex-
citing avenues in the emerging field of program synthesis,
applicable to variety of AI domains. We also believe that
this work raises the potential of discovering novel algorithms
which are more efficient than existing ones.
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