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Abstract. Meta-Interpretive Learning (MIL) is an ILP technique which uses higher-order meta-rules
to support predicate invention and learning of recursive definitions. In MIL the selection of meta-rules is
analogous to the choice of refinement operators in a refinement graph search. The meta-rules determine the
structure of permissible rules which in turn defines the hypothesis space. On the other hand, the hypothesis
space can be shown to increase rapidly in the number of meta-rules. However, methods for reducing the
set of meta-rules have so far not been explored within MIL. In this paper we demonstrate that irreducible,
or minimal sets of meta-rules can be found automatically by applying Plotkin’s clausal theory reduction
algorithm. When this approach is applied to a set of meta-rules consisting of an enumeration of all meta-
rules in a given finite hypothesis language we show that in some cases as few as two meta-rules are complete
and sufficient for generating all hypotheses. In our experiments we compare the effect of using a minimal
set of meta-rules to randomly chosen subsets of the maximal set of meta-rules. In general the minimal set
of meta-rules leads to lower runtimes and higher predictive accuracies than larger randomly selected sets
of meta-rules.

1 Introduction

In [11] techniques were introduced for predicate invention and learning recursion for regular and
context-free grammars based on instantiation of predicate symbols within higher-order definite clauses,
or meta-rules. The approach was extended to a fragment of dyadic datalog in [12, 10] and shown to
be applicable to problems involving learning kinship relations, robot strategies and dyadic concepts
in the NELL database [4]. More recently MIL was adapted to bias reformulation when learning a
hierarchy of dyadic string transformation functions for spreadsheet applications [8]. To illustrate the
idea consider the meta-rule below.

Name Meta-Rule

Chain P (x, y) ← Q(x, z), R(z, y)

By using meta-rules as part of the proof of an example, an adapted meta-interpreter is used to build
up a logic program based on a sequence of meta-substitutions into the given meta-rules which produce
rules such as the following instance of the meta-rule above.

aunt(x, y) ← sister(x, z), parent(z, y)

1.1 Motivation

In [8] it was shown that within the H2
2 hypothesis space1 the number of programs of size n which can

be built from p predicate symbols and m meta-rules is O(mnp3n). This result implies that the efficiency
of search in MIL can be improved by reducing the number of meta-rules. In this paper we investigate
ways in which minimisation of the number of meta-rules can be achieved, without loss of expressivity,
by employing logical reduction techniques. This idea is illustrated in Figure 1. The two meta-rules on

1 Hi
j consists of definite datalog logic programs with predicates of arity at most i and at most j atoms in the body of

each clause.
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Fig. 1. The relationship between the minimal set of meta-rules, meta-rules via meta-interpreted predicate invention, and
instantiated meta-rules.

the left of Figure 1 will be shown in Section 4.2 to form a minimal set for chained H2
2 . Application of

such meta-rules within the meta-interpreter described in Section 5 leads to the introduction of clauses
involving invented predicates such as those found in the second column of Figure 1. These definitions
with invented predicates allow the search to explore the same space as if it had the meta-rules shown
in the third column of Figure 1 which are found in the resolution closure of the minimal set of two
meta-rules. The results in Section 4.2 show that in fact meta-rules with aribitrary numbers of literals
in the clause body can be imitated in this way by the two minimal meta-rules in Figure 1.

This paper is organised as follows. Related work is discussed in Section 2. In Section 3 we describe
meta-rules and the use of encapsuation. We then use encapsulation in Section 4 to show how sets of
meta-rules can be reduced. This is followed in Section 5 by a description of the Prolog implementation
of the Meta-Interpretretive Learning algorithm used in the experiments. In the Experiments in Section
6 we show that reduction of the meta-rules and background knowledge leads to reduced learning times
with increased predictive accuracy of the learned theories. In Section 7 we conclude the paper.

2 Related work

Many approaches have been used to improve search within Inductive Logic Programming. These
include probabilistic search techniques [16], the use of query packs [2] and the use of special purpose
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hardware [1]. By contrast this paper explores the possibility of provably correct techniques for speeding
up search based on automatically reducing the inductive meta-bias of the learner.

The use of meta-rules to build a logic program is, in some ways2, analogous to the use of refinement
operators in ILP [15, 13] to build a definite clause literal-by-literal. As with refinement operators, it
seems reasonable to ask about completeness and irredundancy of any particular set of meta-rules. This
question, which has not been addressed in previous papers on MIL, is investigated in Section 3. On the
other hand, unlike refinement operators, meta-rules can be viewed as a form of declarative bias [6]. By
comparison with other forms of declarative bias in ILP, such as modes [9, 17] or grammars [5], meta-
rules are logical statements. This provides the potential for reasoning about them and manipulating
them alongside normal first-order background knowledge. However, in order to do so, we need a method
which supports reasoning over a mixture of higher-order and first-order clauses.

3 Meta-rules and encapsulation

In this section we introduce a program transformation technique, called encapsulation, which sup-
ports reasoning over meta-rules by transforming higher-order and first-order datalog statements into
first-order definite clauses. We show that a higher-order datalog program has a model whenever the
encapsulation of the program has a model. This allows us to show that logical reduction of encapsu-
lated meta-rules and background knowledge can be used as a method of reducing redundancy when
searching the hypothesis space. Moreover, by applying logical reduction to a complete set of meta-rules
for any fragment of first-order logic we can produce a compact set of meta-rules which is complete
by construction. We assume standard logic programming notation [13] throughout this section and
Section 4.

3.1 Specificational and derivational meta-rules

In Section 1 we introduced the example shown below of a meta-rule M and an associated derived
clause C.

Meta-Rule M P (x, y) ← Q(x, z), R(z, y)
Clause C aunt(x, y) ← parent(x, z), sister(z, y)

M can be viewed as a template for C. In both the meta-rule and the clause the variables x, y, z are
universally quantified while in the meta-rule the variables P, Q, R are unbound (ie have no quantifi-
cation). When used in the context of reasoning the unbound variables can have quantifications bound
in two separate ways.

Existential quantification. Binding existential quantifiers to the unbound variables in a meta-rule
produces a form of specification for clauses to be generated in hypotheses, so with this binding we
refer to the resulting rules as specificational meta-rules. As in formal methods, we assume that if
the specificational meta-rule MS is the specification for clause C then C |= MS .

Universal quantification. Binding universal quantifiers to the unbound variables V in a meta-rule
produces a form appropriate for checking derivability for clauses in hypotheses, so with this binding
we refer to the resulting rules as derivational meta-rules. A clause C is derivable from a derivational
meta-rule MD in the case that there exists a substitution θ with domain V such that MDθ = C,
implying that MD |= C.

2 It should be noted that MIL uses example driven test-incorporation for finding consistent programs as opposed to the
generate-and-test approach of clause refinement.
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Case Meta-rules and clause Encapsulated clause

a) $p(X, Y ) ← $q(X, Z), $r(Z, Y ) m($p, X, Y )) ← m($q, X, Z)), m($r, Z, Y ))
b) P (X, Y ) ← Q(X, Y ) m(P, X, Y ) ← m(Q, X, Y )
c) aunt(X, Y ) ← parent(X, Z), sister(Z, Y ) m(aunt, X, Y )) ← m(parent, X, Z)), m(sister, Z, Y ))

Fig. 2. Three cases exemplifying encapsulation of clauses: a) Specificational meta-rule with existentially quantified vari-
ables P, Q, R by Skolem constants $p, $q, $r, b) Derivational meta-rule with universally quantified higher-order variables
P, Q, R, c) a first-order clause.

In [12, 10] specificational meta-rules were referred to simply as meta-rules. In this paper we distin-
guish between specificational and derivational meta-rules in order to clarify different forms of logical
reasoning used in reduction of logical formulae involving first-order and higher-order statements.

3.2 Encapsulation

In order to support reasoning over specificational and derivational meta-rules using first-order logic
we introduce a mechanism called encapsulation.

Definition 1. Atomic encapsulation Let A be higher-order or first-order atom of the form P (t1, .., tn).
We say that enc(A) = m(P, t1, .., tn) is an encapsulation of A.

Note that the encapsulation of a higher-order atom is first-order. We now extend atomic encapsulation
to logic programs.

Definition 2. Program encapsulation The logic program enc(P ) is an encapsulation of the higher-
order definite datalog program P in the case enc(P ) is formed by replacing all atoms A in P by enc(A).

Figure 2 provides examples of the encapsulation of specificational and derivational meta-rules and a
first-order clause. The notion of encapsulation can readily be extended to interpretations of programs.

Definition 3. Interpretation encapsulation Let I be a higher-order interpretation over the pred-
icate symbols and constants in signature Σ. The encapsulated interpretation enc(I) is formed by re-
placing each atom A in I by enc(A).

We now have the following proposition.

Proposition 1. First-order models The higher-order datalog definite program P has a model M if
and only if enc(P ) has the model enc(M).
Proof. Follows trivially from the definitions of encapsulated programs and interpretations.

We now have a method of defining entailment between higher-order datalog definite programs.

Proposition 2. Entailment For higher-order datalog definite programs P, Q we have P |= Q if and
only if every model enc(M) of enc(P ) is also a model of enc(Q).
Proof. Follows immediately from Proposition 1.

4 Logically reducing meta-rules

In [14] Plotkin provides the following definitions as the basis for eliminating logically redundant clauses
from a first-order clausal theory.
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Definition 4. Clause redundancy The clause C is logically redundant in the clausal theory T ∧ C
whenever T |= C.

Note that if C is redundant in T ∧ C then T is logically equivalent to T ∧ C since T |= T ∧ C and
T ∧ C |= T . Next Plotkin defines a reduced clausal theory as follows.

Definition 5. Reduced clausal theory Clausal theory T is reduced in the case that it does not
contain any redundant clauses.

Plotkin uses these definitions to define a simple algorithm which given a first-order clausal theory T
repeatedly identifies and removes redundant clauses until the resulting clausal theory T ′ is reduced.

Set of Meta-rules Encapsulated Meta-rules Reduced set

P(X,Y) ← Q(X,Y) m(P,X,Y) ← m(Q,X,Y)
P(X,Y) ← Q(Y,X) m(P,X,Y) ← m(Q,Y,X) m(P,X,Y) ← m(Q,Y,X)
P(X,Y) ← Q(X,Y), R(X,Y) m(P,X,Y) ← m(Q,X,Y), m(R,X,Y)
P(X,Y) ← Q(X,Y), R(Y,X) m(P,X,Y) ← m(Q,X,Y), m(R,Y,X)
P(X,Y) ← Q(X,Z), R(Y,Z) m(P,X,Y) ← m(Q,X,Z), m(R,Y,Z)
P(X,Y) ← Q(X,Z), R(Z,Y) m(P,X,Y) ← m(Q,X,Z), m(R,Z,Y) m(P,X,Y) ← m(Q,X,Z), m(R,Z,Y)
P(X,Y) ← Q(Y,X), R(X,Y) m(P,X,Y) ← m(Q,Y,X), m(R,X,Y)
P(X,Y) ← Q(Y,X), R(Y,X) m(P,X,Y) ← m(Q,Y,X), m(R,Y,X)
P(X,Y) ← Q(Y,Z), R(X,Z) m(P,X,Y) ← m(Q,Y,Z), m(R,X,Z)
P(X,Y) ← Q(Y,Z), R(Z,X) m(P,X,Y) ← m(Q,Y,Z), m(R,Z,X)
P(X,Y) ← Q(Z,X), R(Y,Z) m(P,X,Y) ← m(Q,Z,X), m(R,Y,Z)
P(X,Y) ← Q(Z,X), R(Z,Y) m(P,X,Y) ← m(Q,Z,X), m(R,Z,Y)
P(X,Y) ← Q(Z,Y), R(X,Z) m(P,X,Y) ← m(Q,Z,Y), m(R,X,Z)
P(X,Y) ← Q(Z,Y), R(Z,X) m(P,X,Y) ← m(Q,Z,Y), m(R,Z,X)

Fig. 3. Encapsulation of all 14 distinct specificational chained meta-rules from Hi=2

m leading to a reduced set of two.

4.1 Reduction of pure dyadic meta-rules in H
i=2

2

We define H i=2
m as the subclass of higher-order dyadic datalog programs with lieterals of arity 2 and

clause bodies consisting of at most m atoms. Now we define an associated class of chained meta-rules
which will be used in the experiments.

Definition 6. Chained subset of H i=2
m Let C be a meta-rule in H i=2

m . Two literals in C are con-
nected if and only if they share a variable or they are both connected to another literal in C. C is in
the chained subset of H i=2

m if and only if each variable in C appears in exactly two literals and a path
connects every literal in the body of C to the head of C.

We generated a set of all chained meta-rules H i=2
m for this class, of which there are 14, and ran

Plotkin’s clausal theory reduction algorithm on this set. Figure 3 shows the 14 meta-rules together
with their encapsulated form and the result of running Plotkin’s algorithm which reduces the set to
two meta-rules. Since, by construction this set is logically equivalent to the complete set of 14 it can
be considered a universal set (sufficient to generate all hypotheses) for chained H i=2

2 . In the following
section, we prove the same minimal set of meta-rules are complete for H i=2

m .
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4.2 Completeness theorem for H
i=2

m

We now show that two meta-rules are sufficient to generate all hypotheses in H i=2
m .

Definition 7. A H i=2
m chain rule is a meta-rule of the form P (U1, V ) ← T1(U1, U2), . . . , Tm(Um, V )

where m > 0, P and each Ti are existentially quantified distinct predicate variables, and V and each
Ui are universally quantified distinct term variables.

We restrict ourselves to chained H i=2
m . This subclass of H2

m is sufficiently rich for the kinship and
robot examples in Section 6. We now introduce two elementary meta-rules.

Definition 8. Let C = P (X, Y ) ← Q(Y, X). Then C is the inverse rule.

Definition 9. Let C = P (X, Y ) ← Q(X, Z), R(Z, Y ). Then C is the H i=2
2 chain rule.

We now show that the inverse rule and the H i=2
2 chain rule are sufficient to generate all hypotheses

in chained H i=2
m .

Lemma 1. Let C be in H i=2
m , L a literal in the body of C, and m > 0. Then resolving L with the head

of the inverse rule gives the resolvent C ′ with the literal L′ where the variables in L′ are reversed.

Proof. Trivial by construction.

Lemma 2. Let C be the H i=2
m chain rule and m >1. Then resolving C with the H i=2

2 chain rule gives
the resolvent R where R is the H i=2

m+1 chain rule.

Proof. Assume false. This implies that either a resolvent r of the H i=2
2 chain rule with an H i=2

m

chain rule does not have m+1 literals in the body or that the variables in these literals are not
fully chained. Let C be the H i=2

2 chain rule s.t. C = P (X, Y ) ← Q(X, Z), R(Z, Y ) and let D
be the H i=2

m chain rule s.t. D = S(U1, V ) ← T1(U1, U2), T2(U2, U3), . . . , Tm(Um, V ). Resolving the
head of C with the first body literal of D gives the unifier θ = {X/U1, Y/U2, P/T1} and the resol-
vent r = S(U1, V ) ← Q(U1, Z), R(Z, U2), T2(U2, U3), . . . , Tm(Um, V ). Since there are m-1 literals in
T2(U2, U3), . . . , Tm(Um, V ) then the number of literals in the body of r is (m − 1) + 2 = m + 1. Thus
owing to the assumption it follows that these literals are not fully chained. Since the variables in
D form a chain, it follows that the variables in T2(U2, U3), . . . , Tm(Um, V ) also form a chain, so all
variables in r form a chain. This contradicts the assumption and completes the proof.

Lemma 3. Let C1 be the inverse rule, C2 the H i=2
m chain rule, Sm the set of meta-rules in H i=2

m with
exactly m literals in the body, and m > 0. Then {C1, C2} |= R for every R in Sm.

Proof. R can differ from C2 in only two ways: (1) the order of the variables in a literal and (2)
the order of the literals in the body. Case 1. By lemma 1 we can resolve any literal L in R with
C1 to derive R′ with the literal L′ such that the variables in L′ are reversed. Case 2. Let C2 =
P ← . . . , Ti, Tj , . . . , Tm and R = P ←, . . . , Tj , Ti . . . , Tm where T1, . . . , Tm are literals and the predicate
symbols for Ti and Tj are existentially quantified variables. Then we can derive R from C2 with the
substitution θ = {Ti/Tj , Tj/Ti}. Since these two cases are exhaustive, this completes the proof.

Theorem 1. Let C1 be the inverse rule, C2 the H i=2
2 chain rule, Sm the set of meta-rules in H i=2

m ,
and m > 0. Then {C1, C2} |= R for every R in Sm.
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Proof. By induction on m.

1. Suppose m = 1. Then S1 = {(P (X, Y ) ← Q(X, Y )), (P (X, Y ) ← Q(Y, X))}. By lemma 1, we
can resolve C1 with C1

′ to derive C3 = P (X, Y ) ← Q(X, Y ). The set {C1, C3} = S1, thus the
proposition is true for m = 1.

2. Suppose the theorem holds if k ≤ m. By lemma 2 we can resolve the H i=2
2 chain rule with the

H i=2
m chain rule to derive the H i=2

m+1 chain rule. By the induction hypothesis there is a H i=2
m chain

rule, so we can resolve this with C2 to derive the H i=2
m+1 chain rule. By lemma 3, we can derive any

R in H i=2
m with exactly m literals, thus completing the proof.

4.3 Representing H
i=2

m
programs in H

i=2

2

We now show that H i=2
2 is a normal form for H i=2

m .

Theorem 2. Let C be a meta-rule in H i=2
m and m > 2. Then there is an equivalent theory in H i=2

2 .

Proof. We prove by construction. Let C be of the form P ← T1, . . . , Tm. For any literal Ti in the body of
C of the form T (Ui+1, Ui) introduce a new predicate symbol $si, a new clause ($si(X, Y ) ← Ti(Y, X)),
and then replace Ti(Ui+1, Ui) in C with $si(Ui, Ui+1). Step 2. Introduce new predicates symbols
($p1, . . . , $pm−2) and new clauses (P (X, Y ) ← T1(X, Z), $p1(Z, Y )), ($p1(X, Y ) ← T2(X, Z), $p2(Z, Y )),
. . . , ($pm−2(X, Y ) ← tm−1(X, Z), tm(Z, Y )). Step 3. Remove the original clause C from the theory.
You now have an equivalent theory in H i=2

2 .

This theorem is exemplified below.

Example 1. Let C = P (U1, V ) ← T1(U1, U2), T2(U3, U2), T3(U3, U4), T4(U4, V ). Notice that literal T2

is in non-standard form, i.e. the variables in T2 are in the order (Ui+1, Ui) and not (Ui, Ui+1).We
now proceed to a theory in H ′i=2

2 equivalent to C. Step 1. Introduce a new predicate symbol $s2, a
new clause $s2(X, Y ) ← T3(Y, X), and replace T3 in C with $s2(U2, U3) so that C = P (U1, V ) ←
T1(U1, U2), $s2(U2, U3), T3(U3, U4), T4(U4, V ). Step 2. Introduce new predicate symbols $p1 and $p2

and the following new clauses:

P (X, Y ) ← T1(X, Z), $p1(Z, Y )
$p1(X, Y ) ← $s2(X, Z), $p2(Z, Y )
$p2(X, Y ) ← T3(X, Z), T4(Z, Y )

Step 3. After removing C you are left with the following theory, which is equivalent to C.

$s2(X, Y ) ← T2(Y, X)
P (X, Y ) ← T1(X, Z), $p1(Z, Y )
$p1(X, Y ) ← $s2(X, Z), $p2(Z, Y )
$p2(X, Y ) ← T3(X, Z), T4(Z, Y )
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5 Implementation

Figure 4 shows the implementation of MetagolD used in the experiments in Section 6. In this im-
plementation the generalised Meta-Interpreter (Figure 4a) has a similar form to a standard Prolog
meta-interpreter. The differences are as follows. While Prolog program represents its program by a
set of first-order definite clauses, Metagol represents its program by a set of meta-substitutions which
yield first-order clauses when applied to the associated meta-rules. When a Prolog meta-interpreter
repreatedly unifies the first atom in the goal with the head of a clause selected from the clause base
it updates the bindings in the answer set. By contrast, when the meta-interpretrive learner in Figure
4a unifies Atom in the goal with the head of the meta-rule Atom :- Body from the meta-rule base the
abduce predicate adds the meta-substitution MetaSub to the set of meta-substitutions comprising the
hypothesised program3. Figure 4b) shows the set of dyadic meta-rules used within the experiments.

6 Experiments

These experiments compare the effect of using a minimal set of meta-rules to a maximum set of
meta-rules. We also consider the intermediate cases, i.e. randomly chosen subsets of the maximum set
of meta-rules. We define Metagolmin and Metagolmax as variants of MetagolD [12, 10] which use the
minimum and maximum sets of meta-rules respectively,

6.1 Experimental hypotheses

The following null hypotheses were tested:

Null Hypothesis 1. Metagolmin cannot achieve higher predictive accuracy than Metagolmax.
Null Hypothesis 2. Metagolmin and Metagolmax have the same learning times.

6.2 Learning Kinship Relations

We used the kinship dataset from [7]4, which contains 12 dyadic relations: aunt, brother, daughter,
father, husband, mother, nephew, niece, sister, son, and wife, and 104 examples.

3 The OrderTest represents a meta-rule associated constraint which ensures termination, as explained in [12, 10].
4 https://archive.ics.uci.edu/ml/datasets/Kinship

a) Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −

metarule(RuleName, MetaSub, (Atom :- Body), OrderTest),
OrderTest,
abduce(metasub(RuleName, MetaSub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

b) Meta-rules for dyadic fragment
metarule(inverse, [P, Q], ([P, X, Y ] :- [[Q, Y, X]]),

(pred above(P, Q), obj above(X, Y ))).
metarule(chain, [P, Q, R], ([P, X, Y ] :- [[Q, X, Z], [R, Z, Y ]]),

(pred above(P, R), obj above(X, Z), obj above(Z, Y ))).

Fig. 4. MetagolD Prolog representation of a) Generalised meta-interpreter and b) Dyadic fragment meta-rules
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Experiment 1: Metagolmin vs Metagolmax. We randomly selected n examples, half positive and half
negative, of each target kinship relation and performed leave-one-out-cross-validation. All relations
excluding the target relation were used as background knowledge. Predictive accuracies and associ-
ated learning times were averaged over each relation over 200 trials. Fig.5 shows that Metagolmin

outperforms Metagolmax in predictive accuracy. A McNemar’s test at the 0.001 level confirms the sig-
nificance, rejecting null hypothesis 1. This can be explained by the larger hypothesis space searched by
Metagolmax and the Blumer bound [3], which says that a larger search space leads to higher predictive
error. Fig.5 shows that Metagolmin outperforms Metagolmax in learning time with Metagolmax taking
up to seven times longer. Thus null hypothesis 2 is clearly rejected.
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Fig. 5. Performance of full enumeration (Metagolmax) and logically reduced (Metagolmin) sets of metarules when varying
number of training examples.

Experiment 2: Sampled background relations. To explore the effect of partial background information
we repeated the same steps as in experiment 1 but randomly selected p relations as the background
knowledge. Fig.6(a) shows that Metagolmax outperforms Metagolmin in predictive accuracy when
n=4, but when the number of background relations approaches eight Metagolmin starts to outperform
Metagolmax. This is because Metagolmin has to derive meta-rules (e.g. the identity rule) through
predicate invention to replace missing relations and is reaching the logarithmic depth bound on the
iterative deepening search. A subsequent experiment performed without a logarithmic depth bound
confirmed this. Fig.6(b) shows that Metagolmax has considerably longer learning time compared to
Metagolmin. We repeated this experiment for n>4 but as the number relations approaches six the
learning time of Metagolmax became prohibitively slow, whereas Metagolmin was still able to learn
definitions (results omitted for brevity).

Experiment 3: Sampled meta-rules. For this experiment we considered a version of Metagol supplied
with a subset of m meta-rules randomly selected from the set of all meta-rules and repeated the
same steps as experiment 1. Figures 7(a) and 7(b) show the predictive accuracies and associated
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Fig. 6. Performance of full enumeration (Metagolmax) and logically reduced (Metagolmin) sets of metarules when varying
number of background relations.

learning times when n=4 where Metagolm represents Metagol loaded with m sampled meta-rules. The
corresponding results for Metagolmin from experiment 1 are provided for comparison. These results
show that Metagolmin outperforms Metagolm in predictive accuracy and learning time. The results
for other values of n (omitted for brevity) were consistent with when n=4.
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Fig. 7. Peformance when sampling metarules from the full enumeration.

6.3 Learning Robot Strategies

Imagine a robot in a 2-dimensional space which can perform six dyadic actions: move left, move right,
move forwards, move backwards, grab ball, and drop ball. The robot’s state is represented as a list with
three elements [RobotPos,BallPos,HasBall], where RobotPos and BallPos are coordinates and HasBall
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is a boolean representing whether the robot has the ball. The robot’s task is to move the ball to a
destination. Suppose we have the following example:

move ball([0/0, 0/0, false], [2/2, 2/2, false])

Here the robot and ball both start at (0,0) and both end at (2,2). Given this example, Metagolmin

learns the following strategy:

s2(X,Y)← move forwards(X,Z),drop ball(Z,Y)
s2(X,Y)← grab ball(X,Z),move right(Z,Y)
s3(X,Y)← s2(X,Z), s2(Z,Y)
move ball(X,Y)← s3(X,Z),s3(Z,Y)

Here the robot grabs the ball, moves right, moves forward, drops the ball, and then repeats this process.
Metagolmin also learns an alternative strategy where the robot performs grab ball and drop ball only
once. Both are considered equal because both are the same length. If we wanted to prefer solutions
which minimise the number of grabs and drops we would need to associate costs with different oper-
ations. Now suppose that we exclude move right from the background knowledge, given the original
example, Metagolmin learns the strategy:

s2(X,Y)← move backwards(X,Z),drop ball(Z,Y)
s2(X,Y)← grab ball(X,Z),move left(Z,Y)
s3(X,Y)← s2(X,Z),s2(Z,Y)
s4(X,Y)← s3(X,Z),s3(Z,Y)
move ball(X,Y)← s4(Y,X)

Metagolmin found this solution by inverting the high-level action s4, thus allowing the actions move left,
move backwards, and grab ball to indicate their respective inverse actions move right, move forwards,
and drop ball. If we also remove move forwards and drop ball from the background knowledge, Metagolmin

learns a strategy which uses only five clauses and three primitives, compared to the original four clause
solution which used six primitives. The construction of an inverse plan is familiar to retrograde anal-
ysis of positions in chess, in which you go backwards from an end position to work out the moves
necessary to get there from a given starting position. We compared Metagolmin and Metagolmax for
learning robot strategies, but the learning time of Metagolmax was prohibitively slow in all but trivial
circumstances, whereas Metagolmin was able to find optimal solutions with acceptable learning times.

7 Conclusion and future work

We have shown that just two meta-rules are complete and sufficient for generating all hypotheses in
the case of H i=2

2 . However, this set of reduced meta-rules is insufficient for generating all hypotheses in
the case of H2

2 . For example, there is no way to generate any hypothesis containing monadic predicates.
Future work should address this.

Our experiments suggest that the minimal set of meta-rules achieves higher predictive accuracies
and lower learning times than the maximum set. In Section 6.2 we explored the intermediate cases by
sampling meta-rules from the maximum set. The results suggested that there was no benefit in using
more meta-rules than the minimum set. However, this is not always the case. For example, the dyadic
string transformation functions described in [8] require only the chain meta-rule. Thus the optimal set
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of meta-rules for this task is clearly a subset of the reduced minimal sets described in this paper. One
future direction is to investigate learning the optimal set of meta-rules as to minimise the hypothesis
space. One idea is to start with a single meta-rule and to invent new meta-rules when required. This
would require a MIL equivalent of refinement operators and the need to develop a theory regarding
subsumption order between meta-rules. Closely related to this is learning orderings of meta-rules. For
example, when learning robot strategies in Section 6.3 the chain rule was used more often than the
inverse rule. It would be preferable to learn an ordering for the meta-rules to prevent the search from
entering unnecessary branches.

7.1 Future work

Results in this paper have been developed for the case of finding minimal sets of meta-rules for the
chained H i=2

m class of definite clause programs. In future work we intend to see whether the same
approach can be extended to broader classes of meta-rules.

In addition, the ability to encapsulate background knowledge, as demonstrated in Figure 2 indicates
that it might be possible to minimise the meta-rules together with a given set of background clauses.
Preliminary experiments seem to indicate that this is possible, and we would aim to report results on
this approach in any extended version of this paper.

Finally, when learning robot strategies in Section 6.3 we observed a situation when Metagol learned
hypotheses of equal length, but one was preferable to the other. This suggests future work investigating
a version of MIL which associates costs with different operations, so that Metagol prefers solutions
with lower costs. This would have applications in robot strategy learning and path planning problems.
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