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Abstract When machine learning programs from data, we ideally want to learn efficient,
rather than inefficient, programs. However, existing inductive logic programming (ILP)
techniques cannot distinguish between the efficiencies of programs, such as permutation
sort (n!) and merge sort O(n log n). To address this limitation, we introduce Metaopt,
an ILP system that learns minimal cost logic programs. Metaopt iteratively learns lower
cost programs, each time further restricting the hypothesis space. We prove that given
sufficient examples, Metaopt converges on minimal cost programs, and our experiments
show that in practice only small numbers of examples are needed. We also introduce a
cost function called tree cost which measures the size of the SLD-tree searched when a
program is given a goal. This cost function allows Metaopt to learn minimal time com-
plexity programs, including non-deterministic programs. Our experiments on program-
ming puzzles, robot strategies, and real-world string transformation problems show that
Metaopt learns minimal cost programs.

1 Introduction

Suppose you want to machine learn a program from the following input/output exam-
ples:

f([p,r,o,g,r,a,m],r).
f([i,n,d,u,c,t,i,o,n],i).

These examples are Prolog facts. The first argument is the input list. The second argu-
ment is the output. The output is the first duplicate element in the input. Given these
examples and the background predicates shown in Figure 1, Metagol [25,3,4], a state-
of-the-art inductive logic programming (ILP) system, learns the program shown in Figure
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2a. This recursive program goes through the elements of the list checking whether the
same element exists in the rest of the list, i.e. finds the first duplicate element. By con-
trast, consider the program learned by Metaopt, a new ILP system introduced in Section
4, shown in Figure 2b. This program first sorts the list and then goes through checking
whether any adjacent elements are the same. Although larger, both in terms of clauses
and literals, the program learned by Metaopt is more efficient (O(n log n)) than the
program learned by Metagol (O(n2)). This efficiency difference is shown in Figure 2c,
which compares the running times of the two programs when ran with randomly gener-
ated examples.

head([H|_],H).
tail([_|T],T).
element([X|_],X):-!.
element([_|T],X):-element(T,X).
mergesort(A,B):- ...

Fig. 1: Background knowledge for the find duplicate problem. The definition for merge-
sort/2 is omitted for brevity.

f(A,B):-head(A,B),tail(A,C),element(C,B).
f(A,B):-tail(A,C),f(C,B).

(a)

f(A,B):-mergesort(A,C),f1(C,B).
f1(A,B):-head(A,B),tail(A,C),head(C,B).
f1(A,B):-tail(A,C),f1(C,B).

(b) 2,000 4,000 6,000 8,000 10,000

10−2

10−1

100

Input size

Se
co

nd
s

(l
og

)

Metagol
Metaopt

(c)

Fig. 2: Figure (a) shows an inefficient find duplicate program learned by Metagol. Figure
(b) shows an efficient find duplicate program learned by Metaopt, which includes the
invented predicate f1/2. Figure (c) shows the running times of the two programs when
ran with randomly generated examples.

As this find duplicate scenario shows, when machine learning programs from exam-
ples, we should consider the efficiency of the learned programs. However, existing ILP
systems cannot distinguish between the efficiencies of programs, and typically rely on an
Occamist bias to learn textually simple programs, such as those using the fewest literals
[14] or clauses [25].

A recent paper [2] attempted to address this issue by introducing MetagolO, an in-
ductive logic programming (ILP) [21] system based on meta-interpretive learning (MIL)
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[24,25,3]. MetagolO learns minimal resource complexity robot strategies, described as
dyadic logic programs, where resource complexity is the sum of the action costs required
to execute a strategy.

In this paper, we introduce Metaopt, which generalises MetagolO by adding a general
cost function into a meta-interpretive learner, where specific cost functions are provided
as background knowledge. Metaopt uses a search procedure called iterative descent, in-
troduced in [2] but generalised in this paper, to iteratively learn lower cost programs,
each time further restricting the hypothesis space. We prove that given sufficient exam-
ples, Metaopt converges on minimal cost programs, and our experiments show that in
practice only small numbers of examples are necessary. In contrast to MetagolO, Metaopt
is not restricted to dyadic logic programs, does not need designated input-output argu-
ments, can handle negative examples, and considers backtracking steps when measuring
program costs, crucial when learning non-deterministic logic programs. To learn minimal
time complexity programs, we introduce a cost function called tree cost, which measures
the size of the SLD-tree searched when a program is given a goal. Our experiments on
programming puzzles, robot strategies, and real-world string transformation problems
show that Metaopt learns minimal tree cost programs.

Our specific contributions are as follows:

– We describe a general framework for learning minimal cost logic programs (Section
3).

– We extend MIL to support learning minimal cost logic programs (Section 3).
– To learn minimal time complexity logic programs, we introduce a cost function called

tree cost which is based on SLD-tree sizes (Section 3).
– We introduce Metaopt, an MIL implementation, and prove that it converges on min-

imal cost programs given sufficient examples (Section 4).
– We show that Metaopt converges on minimal cost programs given small numbers of

examples (Section 5).
– We demonstrate the generality of Metaopt by simulating MetagolO to learn efficient

robot strategies (Section 5).
– We show that Metaopt learns more efficient programs than existing ILP systems on

real-world string transformation problems (Section 5).

2 Related work

Universal search If nothing is known about a problem besides input/output examples,
and assuming that the solution can be verified in polynomial time, Levin’s universal
search [15] is the asymptotically fastest way of finding a program to solve the problem.
Levin search differs from our work because it returns the first (and smallest) program
that solves a problem, which is not necessarily the most efficient program. By contrast,
after finding a program, our approach, Metaopt, continues to search for more efficient
programs using the cost of the previously found program to restrict the hypothesis space.
In addition, for many problems, it is unlikely that the most efficient program can be
encoded with a small number of bits, making Levin search impractical. By contrast, al-
though our approach is less general, because it assumes background knowledge of the
problem, it is more practical.
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Deductive program synthesis In contrast to universal search methods, deductive program
synthesis [17] systems build programs from full specifications, where a specification pre-
cisely states the requirements and behaviour of the desired program. Both Kant [10]
and Zelle and Mooney [41] synthesise efficient programs from complete specifications.
In [41] the authors take as input a program to sort lists and use an explanation-based
learning [18] approach to speed-up the execution of the program by analysing program
execution traces over training examples. In contrast to these deductive approaches, our
approach induces programs from incomplete specifications in the form of input/output
examples. In addition, the aforementioned approaches do not guarantee that the result-
ing program is optimal in terms of efficiency. By contrast, we prove that Metaopt finds
the minimal cost program given sufficiently large numbers of examples (Theorem 1),
and Experiment 1 shows that in practice only small numbers of examples are necessary.

Program induction Program induction, also known as inductive programming [8], refers
to inducing programs from incomplete specifications, typically input/output examples.
Early work includes Plotkin on least generalisation [29,30], Vere on induction algorithms
for expressions in predicate calculus [38], and Summers on inducing Lisp programs [35].
Interest in program induction has grown recently, partially due to the success of mass-
market tools, such as FlashFill [7]. Most forms of program induction are biased towards
learning simple programs, typically those with minimal textual complexity, such as the
number of clauses [25] or the number of literals [14]. This bias ignores the efficiency of
hypothesised programs. In ILP, for instance, Golem [23] and Progol [22] can both learn
sorting algorithms from examples, but when given background predicates partition/3
and append/3, suitable for learning quick sort, both systems learn variants of insertion
sort, because the definition is smaller and there is no bias for learning more efficient
algorithms. By contrast, Metaopt is biased towards learning efficient programs.

AI planning In AI, planning traditionally involves deriving a sequence of actions to achieve
a specific goal from an initial situation [32]. Planning research mostly focuses on effi-
ciently learning plans [9]. However, we are often interested in plans that are optimal
with respect to an objective function which measures the quality of a plan. A common
objective function is the length of the plan [39], and existing systems can learn optimal
plans based on this function [6].

Plan length alone is only one criterion. If executing actions is costly, we may prefer a
plan which minimises the overall cost of the actions, e.g. to minimise the use of resources.
The answer set programming literature has started to address learning optimal plans by
incorporating action costs into the learning [6,40]. In contrast to these approaches, our
aim is to learn robot strategies [2], representing a (sometimes infinite) set of plans, which
contain conditions and recursion.

Various machine learning approaches support constructing strategies, such as the
SOAR architecture [13], reinforcement learning [36], and action learning in ILP [19,
28]. Relational markov decision processes [37] provide a general setting for reinforce-
ment learning. Strategies can be viewed as a deterministic special case of markov deci-
sion processes (MDPs) [31]. Unlike these approaches, we learn recursive logic programs,
including the use of predicate invention for automatic problem decomposition.

Efficient logic programs Kaplan [11] describes a method for estimating the average-case
complexity of deterministic logic programs. However, in contrast to functional and im-
perative programs, logic programs can be non-deterministic, i.e. a logic program may
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return multiple solutions. Multiple solutions to a logic program are found by searching
a SLD-tree for a SLD-refutation, and then backtracking to find other SLD-refutations.
In [5], the authors introduce a semi-automatic method to estimate the worst-case time
complexity of deterministic and non-deterministic logic programs. However, their ap-
proach requires meta-information, such as mode declarations and type information. In
contrast to these approaches, we introduce a cost function which estimates the worst-
case complexity of deterministic and non-deterministic logic programs by measuring the
size of the SLD-tree searched to find a SLD-refutation of a goal, which does not require
meta-information. In addition, the aforementioned approaches do not consider how to
machine learn efficient programs.

In Section 4, we introduce Metaopt, which is used in Experiments 1, 2, and 3 to learn
minimal time complexity logic programs by iteratively restricting the hypothesis space by
bounding the number of resolutions allowed to find a hypothesis. Our approach is similar
to one proposed by Blum and Blum [1] which was later adapted by Shapiro [33] who
uses the notion of h-easy functions to limit the search for a hypothesis, where an atom A
is h-easy with respect to a logic program P if there exists a derivation of A from P using
at most h resolution steps. Shapiro’s approach measures the number of resolutions in the
derivation of A from P, and thus ignores backtracking steps. By contrast, our approach
uses the notion of tree cost to measure the total number of resolutions required to find a
SLD-refutation of a goal with respect to a program, i.e. tree cost includes backtracking
steps.

MetagolO To our knowledge, the only work on inducing efficient programs is the work
of [2], in which the authors introduce an ILP system called MetagolO and show that
it learns efficient robot strategies. A robot strategy is a logic program in which every
predicate is dyadic, where the first argument is the input and the second is the output.
Each argument is a state description, represented as a list of Prolog atoms. Each pred-
icate modifies a state. The resource complexity of a strategy is maintained in the state
as a monadic atom named energy. Each time a robot action is successfully executed,
the resource complexity is increased by an amount specified by the user. MetagolO is
not a general approach for learning efficient logic programs and has several limitations.
Problems must be represented as dyadic programs, which is inconvenient and may lead
to reduced learning performance because concepts may be less succinctly represented.
Also, the user must specify predicate costs. For instance, if mergesort/2 is part of the back-
ground knowledge, then the user must specify its cost. If no costs are given, MetagolO
assumes uniform costs, and cannot, for instance, distinguish between mergesort/2 and
tail/2. Finally, MetagolO ignores failed actions and cannot accurately measure the time
complexity of programs with backtracking. Our system, Metaopt, addresses all of these
issues.

3 Framework

In this section, we describe the cost minimisation problem and MIL, which we extend to
support learning minimal cost programs. We assume familiarity with logic programming
[26].
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3.1 Cost minimisation problem

We assume a language of examples E , background knowledge B , and hypotheses H .
We denote the Herbrand base of the language L as σL . We denote the power set of the
set S as 2S .

We first define a cost function that measures the cost of a program with respect to
an atom:

Definition 1 (Program cost) A program cost function is of the form:

Φ :H ×σB∪E → N

A program cost function forms part of the cost minimisation input:

Definition 2 (Cost minimisation input) The cost minimisation input is a triple (B, E,Φ)
where:

– B ⊆B is background knowledge
– E = (E+, E−) is a pair where E+ ⊆ E , E− ⊆ E are sets of atoms representing positive

and negative examples respectively
– Φ is a program cost function

We measure the maximum (i.e. worst-case) cost of a program over a set of examples:

Definition 3 (Maximum cost) Let (B, E,Φ) be a cost minimisation input. Then the max-
imum cost of a program H ∈H is:

max_cost(Φ, H, (E+, E−)) = maxe∈E+∪E−Φ(H, e)

We also define a function that measures the size of a logic program:

Definition 4 (Program size) The size size(H) of the program H is the number of clauses
in H.

We use the maximum cost of a program to define an efficiency ordering over programs:

Definition 5 (Efficiency ordering �Φ) Let (B, E,Φ) be a cost minimisation input and
H1, H2 ∈H . Then H1 �Φ H2 iff either:

1. max_cost(Φ, H1, E)< max_cost(Φ, H2, E)
2. max_cost(Φ, H1, E) = max_cost(Φ, H2, E) and size(H1)≤ size(H2)

This ordering priorities programs first by their maximum cost, then by their size. We use
this ordering to define the cost minimisation problem. For convenience, we first define
the version space [18], which contains only hypotheses consistent with the examples:

Definition 6 (Version space) The version spaceVB,E of a cost minimisation input (B, E,Φ)
contains the hypotheses consistent with E:

VB,E = {H ∈H | B ∪H |= E+, B ∪H 6|= E−}

We now define the cost minimisation problem:

Definition 7 (Cost minimisation problem) Given a cost minimisation input (B, E,Φ),
the cost minimisation problem is to return a program H ∈ VB,E such that H �Φ H ′ for all
H ′ ∈ VB,E .
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3.2 Meta-interpretive learning

In this paper, we use MIL for the cost minimisation problem. MIL is a form of ILP
based on a Prolog meta-interpreter. The key difference between a MIL learner and a
standard Prolog meta-interpreter is that whereas a standard Prolog meta-interpreter at-
tempts to prove a goal by repeatedly fetching first-order clauses whose heads unify with
a given goal, a MIL learner additionally attempts to prove a goal by fetching higher-
order metarules (Figure 3), supplied as background knowledge, whose heads unify with
the goal. The resulting meta-substitutions are saved and can be reused in later proofs.
Following the proof of a set of goals, a logic program is formed by projecting the meta-
substitutions onto their corresponding metarules.

Name Metarule
Ident P(A, B)←Q(A, B)
Precon P(A, B)←Q(A), R(A, B)
Curry P(A, B)←Q(A, B, F)
Chain P(A, B)←Q(A, C), R(C , B)
Tailrec P(A, B)←Q(A, C), P(C , B)

Fig. 3: Example metarules. The letters P, Q, R, and F denote existentially quantified
variables. The letters A, B, and C denote universally quantified variables.

A standard MIL input is defined as:

Definition 8 (MIL input) A MIL input is a pair (B, E) where:

– B = BC ∪M where BC is a set of definite clauses and M is a set of metarules
– E = (E+, E−) is a pair where E+ and E− are sets of atoms representing positive and

negative examples respectively

A standard MIL learner is defined as:

Definition 9 (MIL learner) Given a MIL input (B, E), a MIL learner returns a program
H ∈ VB,E .

We extend MIL to support the cost minimisation problem. We first extend the MIL input:

Definition 10 (Cost minimal MIL input) A cost minimal MIL input is a triple (B, E,Φ)
where B and E are as in a standard MIL input and Φ is a program cost function.

We now define a cost minimal MIL learner:

Definition 11 (Cost minimal MIL learner) Given a cost minimal MIL input (B, E,Φ), a
cost-minimal MIL learner returns a program H ∈ VB,E such that H �Φ H ′ for all H ′ ∈ VB,E .

In Section 4, we introduce Metaopt, an ILP system that solves the MIL cost minimisation
problem.
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3.3 Tree cost minimisation

The cost minimisation input includes a program cost function (Definition 1). We now
introduce a cost function for learning minimal time complexity logic programs. In com-
puter science, time complexity refers to the time an algorithm needs to perform some
computation. In logic programming, computation is formalised by means of SLD-resolution.
Given a logic program H and a goal G, computation involves finding a SLD-refutation
of H ∪ {G}. A SLD-refutation is found by searching a SLD-tree, which contains all pos-
sible SLD-derivations, and thus all possible SLD-refutations. Prolog searches for SLD-
refutations using a depth-first search [34]. We can therefore measure the runtime (time
complexity) of a Prolog program as a function of the size of the SLD-tree that is being
searched. For a positive example, we can measure the size of the leftmost branch of the
SLD-tree in which the first SLD-refutation is found, i.e. the leftmost successful branch:

Definition 12 (Successful branch) Let H be a definite program, G be an initial goal,
and T be a SLD-tree for H ∪ {G}. Then a successful branch is a path between the root
(G) and a leaf containing the empty clause.

We measure the size of the leftmost successful branch:

Definition 13 (Branch size) Let H be a definite program, G a goal, T a SLD-tree for H∪
{G}, and L be the leftmost successful branch of T . Then the branch size branch_size(H, G)
is the number of resolutions prior to and including L in the depth-first enumeration of
T .

For a negative example, we can measure the size of the finitely failed SLD-tree:

Definition 14 (Finitely failed tree) Let H be a definite program, G be an initial goal.
Then a finitely failed SLD-tree for H∪{G} is one which is finite and contains no successful
branches.

We measure the size of the finitely failed SLD-tree:

Definition 15 (Failed tree size) Let H be a definite program, G be an initial goal, and
T be a finitely failed SLD-tree for H ∪ {G}. Then the failed tree size t ree_size(H, G) is
the number of resolutions in the depth-first enumeration of T .

We now define our tree cost function:

Definition 16 (Tree cost) Let H be a definite program, G a goal, and T be a SLD-tree
for H ∪ {G}. Then the tree cost t ree_cost(H, G) is:

t ree_cost(H, G) =

¨

branch_size(H, G) if T has a successful branch

t ree_size(H, G) if T is finitely failed

In Experiments 1, 2, and 3, Metaopt uses tree cost to learn minimal time complexity
programs.
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4 Implementation

In this section, we introduce Metaopt, a MIL implementation that learns minimal cost
logic programs. We also introduce two cost function implementations for learning mini-
mal tree cost (Definition 16) and minimal resource complexity [2] programs. Finally, we
describe MetagolO which is used as a comparator in the experiments in Section 5.

4.1 Metaopt

Metaopt extends Metagol [4], an existing MIL implementation, to support learning min-
imal cost logic programs. The two key extensions are (1) the addition of a general cost
function into the meta-interpreter, and (2) the use of a procedure called iterative descent
to search for lower cost programs. We describe these two extensions in turn.

4.1.1 Meta-interpreter

The key extension in Metaopt is the addition of a proof cost, denoted by the variables
Ci , into the meta-interpreter:

learn(Pos,Neg,Prog):-
prove(Pos,[],Prog,0,_),
\+ prove(Neg,Prog,Prog,0,_).

prove([],Prog,Prog,C,C).
prove([Atom|Atoms],Prog1,Prog2,C1,C2):-

prove_aux(Atom,Prog1,Prog3,C1,C3),
prove(Atoms,Prog3,Prog2,C3,C2).

% use a background predicate
prove_aux(Atom,Prog,Prog,C1,C2):-

prim(Atom),!,
pos_program_cost(Atom,Cost),
C2 is C1+Cost,
get_max_cost(MaxCost),
C2<MaxCost.

% use an existing meta-substituion
prove_aux(Atom,Prog1,Prog2,C1,C2):-

member(sub(Name,Subs),Prog1),
metarule(Name,Subs,(Atom:-Body)),
prove(Body,Prog1,Prog2,C1,C2).

% use a new meta-substituion
prove_aux(Atom,Prog1,Prog2,C1,C2):-

metarule(Name,Subs,(Atom:-Body)),
prove(Body,[sub(Name,Subs)|Prog1],Prog2,C1,C2).

The meta-interpreter works as follows. Given sets of atoms representing positive (Pos)
and negative (Neg) examples, Metaopt tries to prove each positive atom in turn. Metaopt
first tries to deductively prove an atom by calling pos_program_cost/2, which is defined
as background knowledge. When an atom is proven this way, the cost of proving that
atom is added to the overall proof cost. If Metaopt cannot deductively prove an atom,
it tries to unify the atom with the head of a metarule (metarule(Name,Subs,(Atom :-
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Body))) and to bind the existentially quantified variables in a metarule to symbols in the
predicate signature. Metaopt saves the resulting meta-substitution, which are eventually
used to form a program. Metaopt then tries to prove the body of the metarule recursively
through meta-interpretation. During the proof of the positive atoms, if the overall proof
cost exceeds a bound (MaxCost), then the proof is terminated, as to ignore inefficient
programs. This bound is determined by the iterative descent procedure, described in
the next section. After proving all positive atoms, a logic program is formed by project-
ing the meta-substitutions onto their corresponding metarules. Finally, Metaopt checks
the consistency of the learned program with the negative examples. If the program is
inconsistent, then Metaopt backtracks to explore different branches of the SLD-tree.

4.1.2 Iterative descent

The Metaopt meta-interpreter is controlled by the iterative descent algorithm:

metaopt(Pos,Neg):-
learn(Pos,Neg,Prog),
max_program_cost(Prog,Pos,Neg,Cost),
is_better(Cost),
set_max_cost(Cost),
set_best_program(Prog),
false.

metaopt(_,_):-
get_best_program(Prog),
pprint(Prog).

max_program_cost(Prog,Pos,Neg,MaxCost):-
assert_program(Prog),
findall(C,(member(Atom,Pos),pos_program_cost(Atom,C)),PosCosts),
findall(C,(member(Atom,Neg),neg_program_cost(Atom,C)),NegCosts),
append(PosCosts,NegCosts,Costs),
max_list(Costs,MaxCost),
retract_program(Prog).

This algorithm works as follows. Starting at iteration 1, Metaopt uses iterative deepening
on the number of clauses to find a consistent program H1 with the minimal program size
(i.e. fewest clauses (Definition 4)). The program H1 is the quickest to learn because the
hypothesis space is exponential in the number of clauses [16,3]. Metaopt then calculates
the maximum cost of H1 using the max_program_cost/4 predicate to derive an upper
bound for subsequent iterations. This max_program_cost/4 predicate measures the cost
of a program as the maximum cost of both proving positive examples and disproving
negative examples. In iteration i > 1, Metaopt searches for a program Hi , again with
minimal program size, but with a cost such that maximum cost of Hi is less than the
maximum cost of Hi−1. Metaopt continues to iterate until it cannot find a more efficient
program.

We now prove that Metaopt solves the cost minimisation problem (Definition 7), i.e.
that Metaopt converges on minimal cost programs given sufficiently large numbers of
examples:

Theorem 1 Assume E consists of m examples drawn randomly and independently from
instance distribution D. Without loss of generality consider the hypothesis space formed of
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two programs H1 and H2 such that H1 �Φ H2 for an arbitrary cost function Φ. Then for a
sufficiently large value m, Metaopt will return H1 in preference to H2.

Proof Assume false, which, because of Definition 5, implies that either (1) max_cost(H1, E)>
max_cost(H2, E), or (2) max_cost(H1, E) = max_cost(H2, E) and size(H1, E)> size(H2, E).

Case 1 With sufficiently large m there will exist an example e such that Φ(H1, e) <
Φ(H2, e) and Φ(H2, e) > Φ(H2, e′) for all other e′ in E+ and Φ(H1, e) > Φ(H1, e′)
for all other e′ in E+. In this case max_cost(H1, E)< max_cost(H2, E) and Metaopt
returns H1 which contradicts the assumption, so we discard this case.

Case 2 Metaopt performs iterative deepening search (IDS) on the number of clauses.
From the optimality of IDS, Metaopt returns H1 which contradicts the assumption,
so we discard this case.

These two cases are exhaustive, thus the proof is complete.

4.2 Program costs

Metaopt assumes a program cost function (Definition 1) as background knowledge. We
now describe two cost function implementations.

4.2.1 Tree cost

Figure 4 shows the implementation of the tree cost functions (Definition 16) for positive
and negative examples. This implementation uses an inbuilt feature of SWI-Prolog to
measure the number of logical inferences needed to prove an atom, where an inference
is defined as a call or redo on a predicate1. This approach measures backtracking steps,
costs associated with non-dyadic predicates, and costs associated with trying to prove
negative examples, none of which are supported by MetagolO. In Experiments 1, 2, and 3,
Metaopt uses this implementation to learn minimal tree cost programs, and thus minimal
time complexity programs.

4.2.2 Resource complexity

In Experiment 4, we reproduce an experiment from [2] to show that Metaopt subsumes
MetagolO and can learn minimal resource complexity robot strategies. As explained in
Section 2, MetagolO maintains the resource complexity of a strategy in the state descrip-
tion as a Prolog fact called energy. Figure 5 shows the implementation of a function
which accesses this value so that it can be used by Metaopt.

4.3 MetagolO

In Experiments 2 and 3 we compare Metaopt against MetagolO. However, we cannot
use the implementation provided in [2] because MetagolO requires that problems be
represented as dyadic robot strategies (as detailed in Section 2). Therefore, we simulate
MetagolO in Metaopt by defining a program cost predicate in which all dyadic predicates

1 http://www.swi-prolog.org/pldoc/man?predicate=statistics/2
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% measure cost of a positive example
pos_program_cost(Atom,Cost):-

statistics(inferences,I1),
call(Atom),
statistics(inferences,I2),
Cost is I2-I1.

% measure cost of a negative example
neg_program_cost(Atom,Cost):-

statistics(inferences,I1),
(call(Atom) -> true; true),
statistics(inferences,I2),
% subtract one to account for the
% cost of the ifthen statement
Cost is I2-I1-1.

Fig. 4: Implementation of a program cost function to measure tree cost

pos_program_cost(Atom,Cost):-
Atom=..[P,A,B],
member(energy(E1),A),
call(Atom),
member(energy(E2),B),
Cost is E2-E1.

neg_program_cost(_,_):-
false.

Fig. 5: Implementation of a program cost function to measure resource complexity

have a uniform cost of 1, which is the assumption in MetagolO, and non-dyadic predicates
have a cost of 0, because MetagolO does not take these into account when calculating
resource complexity.

5 Experiments

In this section, we describe four experiments2 which test whether Metaopt learns mini-
mal cost programs. We also compare Metaopt with Metagol and MetagolO, which opti-
mise textual complexity and resource complexity respectively.

5.1 Experiment 1: convergence on minimal cost programs

This experiment revisits the find duplicate problem from Section 1, where we are trying
to learn a program to find a duplicate in a list. The aim is to test the claim that Metaopt
converges on minimal cost programs given sufficient examples (Theorem 1). In particu-
lar, we want to see how many examples are required in practice to converge on a minimal
cost program. We test the null hypothesis:

2 All code and experimental data used in the experiments are included as supplemental material sub-
mitted with this paper and will be made public should the paper be accepted
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Null hypothesis 1 Metaopt cannot learn minimal cost programs without very large num-
bers of examples.

This experiment focuses on learning minimal tree cost programs, and thus minimal time
complexity programs.

Materials To refute null hypothesis 1, we must identify a minimal tree cost program in
the hypothesis space, otherwise our hypothesis would be untestable. We provide Metaopt
with background knowledge containing the ident, chain, and tailrec metarules (Figure
3) and four predicates: mergesort/2, tail/2, head/2, and element/2 (Figure 1). Given this
background knowledge3, the minimal tree cost program in the hypothesis space is shown
in Figure 2b. This program has the tree cost:

Proposition 1 Find duplicate minimal cost program Let n be the list length. Then the
tree cost of a minimal tree cost program is O(n log n).

Sketch proof 1 The minimal tree cost program involves first sorting the list and then
passing through the list checking whether any two adjacent elements are the same. Thus
the overall cost is O(n log n).

We generate a positive training example as follows:

1. Select a random integer k from the interval [5, 100] to represent the size of the input
2. Select a random integer j from the interval [1, k] to represent the duplicate element
3. Append j to the sequence 1 . . . k and randomly shuffle the resulting list to form s′

4. Form the atom f (s′, j)

We generate a negative training example as follows:

1. Select a random integer k from the interval [5,100] to represent the size of the input
2. Select a random integer j from the interval [1, k] to represent the false duplicate

element
3. Randomly shuffle the sequence 1 . . . k to form s′

4. Form the atom f (s′, j)

We generate testing examples using the same procedures but for a fixed input size k =
1000.

Method Our experimental method is as follows. For each m in the interval [2,20]:

1. Generate m training examples, half positive and half negative
2. Generate 20 testing examples, half positive and half negative
3. Learn a program p using the training examples with at most 4 clauses with a timeout

of 10 minutes.
4. Measure the tree cost and running time of p over the testing examples

We measure median tree costs and running times over 15 repetitions.

Results Figure 6a shows that Metaopt learns programs with lower costs given more train-
ing examples. After approximately 10 examples, Metaopt converges on the minimal cost
program, refuting null hypothesis 1. Figure 6b shows similar results when measuring
the runtimes of learned programs, and that the tree cost of a program corresponds to its
time complexity.

3 One could find the duplicate in time O(n) using a hash table but this program is not in the hypothesis
space, so could not be found by Metaopt.
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Fig. 6: Figure (a) shows the tree costs of programs learned by Metaopt when varying the
number of training examples. After approximately 10 examples, Metaopt converges on
the minimal cost program. Figure (b) shows the corresponding runtimes. The error bars
represent the standard error.

5.2 Experiment 2: comparison with other systems

This experiment again revisits the find duplicate problem. The aim is to compare the tree
costs and running times of programs learned by Metaopt to programs learned by Metagol
and MetagolO. We test the null hypothesis:

Null hypothesis 2 Metaopt cannot learn programs with lower costs and lower running
times than Metagol and MetagolO.

Materials We provide all three systems with the same background knowledge as in Ex-
periment 1. We generate training examples in the same way as in Experiment 1. We
generate testing examples using the same procedure but for fixed list sizes from the set
{1000, 2000, . . . , 10000} to measure tree costs as the input grows.

Method Our experimental method is as follows:

1. Generate 20 training examples, half positive and half negative
2. Generate 20 testing examples, half positive and half negative
3. Learn a program p using the training examples and at most 4 clauses with a timeout

of 10 minutes.
4. Measure the tree cost and running time of p over the testing examples

We measure median tree costs and running times over 10 repetitions.

Results The log-lin plot in Figure 7a shows that Metaopt learns programs with lower tree
costs and running times than both Metagol and MetagolO. Therefore, null hypothesis 2
is refuted both in terms of both tree costs and running times. The standard error on
the Metaopt line is because in one of the 10 trials, Metaopt learned a non-minimal cost
program. In all the other trials, Metaopt learned the minimal cost program. Figures 2a
and 2b show example programs learned by MetagolO and Metaopt respectively.
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Fig. 7: Figure (a) shows the tree costs of learned find duplicate programs. The costs of
programs learned by Metaopt match those of the minimal cost program and are of order
O(n log n). By contrast, the programs learned by Metagol and MetagolO are of order
O(n2). Figure (b) shows the corresponding runtimes.

5.3 Experiment 3: real-world string transformations

In [16] the authors evaluate Metagol on 17 real-world string transformation problems.
Figure 8 shows problem p01 where the goal is to learn a program that extracts the name
from the input. This experiment explores whether Metaopt can learn minimal tree cost
programs for these real-world problems.

Input Output
My name is John. John
My name is Bill. Bill
My name is Josh. Josh
My name is Albert. Albert
My name is Richard. Richard

Fig. 8: Examples for the p01 string transformation problem.

Materials We provide Metaopt, Metagol, and MetagolO with the same background knowl-
edge containing the curry and chain metarules (Figure 3) and the predicates: is_letter/1,
not_letter/1, is_uppercase/1, not_uppercase/1, is_number/1, not_number/1, is_space/1,
not_space/1, tail/2, dropLast/2, reverse/2, filter/3, dropWhile/3, and takeWhile/3.

Method The dataset from [16] contains five examples of each problem. We perform leave
two out (keep three in) cross validation. We measure median program costs and running
times over all trials. We limit the search to programs with six clauses and set a timeout
at 5 minutes.
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Results Out of the 17 problems, Metagol, MetagolO, and Metaopt learned different pro-
grams for 8 of them. Figure 9 shows the tree costs for the 8 problems, where Metaopt
learns programs with lower costs in all cases, again refuting null hypothesis 2. For prob-
lem p01, the cost of the program learned by Metaopt (31) is half of that learned by
Metagol (67) and MetagolO (86). Figure 10 shows example programs learned by the
systems for problem p01. Although textually more complex, the program learned by
Metaopt has a lower tree cost because it successively applies the tail/2 predicate until
it reaches the first letter of the name. By contrast, Metagol learns a program which uses
the dropWhile/3 predicate to recursively check whether the head symbol is uppercase,
and if not drops the head element, which requires twice the amount of work. Because
MetagolO only associates costs with dyadic predicates, it found a program which does
not directly use any primitive dyadic predicates, and so has a resource cost of 0, yet is
less efficient than the one found by Metaopt.
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Fig. 9: Tree costs of learned string transformation programs where Metaopt learns lower
tree cost programs than Metagol and MetagolO in all cases.

5.4 Experiment 4: robot postman strategies

In [2], MetagolO is used to learn robot strategies with lower resource complexities than
Metagol. This experiment reproduces the postman experiment to show that Metaopt
can simulate MetagolO by treating resource complexity as a specific case of the cost
minimisation problem, i.e. by using the resource complexity implementation described
in Section 4.2.2. We test the null hypotheses:

Null hypothesis 3 Metaopt cannot learn programs with lower resource complexities
than Metagol.
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Metagol (a)

f(A,B):-tail(A,C),f1(C,B).
f1(A,B):-dropLast(A,C),f2(C,B).
f2(A,B):-dropWhile(A,B,not_uppercase).

MetagolO (b)

f(A,B):-f_1(A,C),f4(C,B).
f1(A,B):-f_2(A,C),f3(C,B).
f2(A,B):-filter(A,B,is_letter).
f3(A,B):-dropWhile(A,B,is_uppercase).
f4(A,B):-dropWhile(A,B,not_uppercase).

Metaopt (c)

f(A,B):-tail(A,C),f1(C,B).
f1(A,B):-f2(A,C),dropLast(C,B).
f2(A,B):-f3(A,C),f3(C,B).
f3(A,B):-tail(A,C),f4(C,B).
f4(A,B):-f5(A,C),f5(C,B).
f5(A,B):-tail(A,C),tail(C,B).

Fig. 10: Programs learned by Metagol, MetagolO, and Metaopt for the p01 string trans-
formation problem.

Materials Imagine a humanoid robot postman learning to collect and deliver letters in a
d sized one-dimensional space. In the initial state, the robot is at position 1 and n letters
are to be collected. In the final state, the robot is at position 1 and n letters have been de-
livered to their intended destinations. The state is represented as a list of Prolog facts. The
robot can perform primitive actions to transform the state: move_right/2, move_left/2,
pick_up_left/2, pick_up_right/2, drop_left/2, drop_right/2, take_letter/2, bag_letter/2,
and give_letter/2. All primitive actions have a cost of 1. The robot can also perform com-
plex actions, which are defined in terms of primitive actions: find_next_sender/2 and
find_next_recipient/2, go_to_start/2, and go_to_end/2. The costs of complex actions are
determined by their constituent primitive actions. The robot can take and carry a single
letter from a sender using the action take_letter/2. Alternatively, the robot can take a
letter from a sender and place it a postbag using the action bag_letter/2, which allows
the robot to carry multiple letters. We also use the chain and tailrec metarules (Fig 3).

We generate a training example using the following procedure:

1. Select a random integer d from the interval [10,25] representing the number of
houses.

2. Select a random integer n from the interval [1, 5] representing the number of letters.
3. For each letter l, select random integers i and j from the interval [1, d] representing

the letter’s start and end positions, such that i 6= j
4. Form an input state s1 =

[pos(pman, 0), ener g y(0), pos(l1, i1), . . . , pos(ln, in), let ter(l1, i1, j1), . . . , let ter(ln, in, jn)]

5. Form an output state s2 =

[pos(pman, _), ener g y(_), pos(l1, j1), . . . , pos(ln, jn), let ter(l1, i1, j1), . . . , let ter(ln, in, jn)]
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6. Form an example f (s1, s2).

We generate a test example using the aforementioned procedure but with a fixed number
of letters d = 50 and fixed number of letters n from the set {2, 4, . . . , 20} to measure the
resource complexity as n grows.

Methods Our experimental method is as follows:

1. Generate 5 positive training and 5 positive testing examples
2. Learn a program p using the training examples and at most 5 clauses with a timeout

of 10 minutes.
3. Measure the resource complexity and running time of p over the testing examples

We measure median resource complexities of learned strategies over 10 trials.

Results Figure 11 shows that Metaopt learns strategies with lower resource complexities
than Metagol, refuting null hypothesis 3. Figure 12 shows two strategies learned by
Metagol (a) and Metaopt (b), able to handle any number of houses, any number of
letters, and different start/end positions for the letters. Although the strategies are equal
in their textual complexity, they differ in their resource complexity. The strategy learned
by Metaopt (b) has lower resource complexity because it involves the use of the postbag
to store letters, whereas strategy (a) does not.
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Fig. 11: Program costs of learned postman strategies with varying numbers of letters for
50 places. Program costs correspond to resource complexity.

6 Conclusions and further work

We have introduced Metaopt which extends MIL to support learning minimal cost logic
programs. To find minimal cost programs, Metaopt uses iterative descent, which itera-
tively learns lower cost programs, each time further restricting the hypothesis space. We



Learning efficient logic programs 19

Metagol (a)

f(A,B):-go_to_start(A,C),f1(C,B).
f(A,B):-f1(A,C),f(C,B).
f1(A,B):-find_next_recipient(A,C),f2(C,B).
f1(A,B):-find_next_sender(A,C),take_letter(C,B).
f2(A,B):-give_letter(A,C),go_to_start(C,B).

Metaopt (b)

f(A,B):-f1(A,C),f1(C,B).
f1(A,B):-f2(A,C),go_to_start(C,B).
f1(A,B):-f2(A,C),f1(C,B).
f2(A,B):-find_next_recipient(A,C),give_letter(C,B).
f2(A,B):-find_next_sender(A,C),bag_letter(C,B).

Fig. 12: Postman strategies learned by Metagol (a) and Metaopt (b) with resource com-
plexities O(n+ d) and O(nd) respectively.

have shown (Theorem 1) that given sufficient examples, Metaopt converges on minimal
cost programs, and that in practice (Experiment 1), only small numbers of examples
are required. To learn efficient time complexity programs, we introduced a cost function
called tree cost (Definition 16), which is based on the size of a SLD-tree at the point of
which a goal is proved by a logic program. Our experiments on the find duplicate problem
show that Metaopt learns minimal cost programs given small numbers of examples. By
contrast, Metagol and MetagolO both learn non-minimal cost programs, with longer run-
ning times. Our experiments also show that Metaopt learns programs with lower costs
than existing systems on some real-world string transformation problems. Finally, our
experiments on learning robot strategies show that Metaopt can simulate MetagolO and
learn minimal resource complexity robot strategies by treating resource complexity as a
specific case of the cost minimisation problem.

6.1 Future work

Theorem 1 shows that Metaopt learns minimal cost programs given sufficient examples.
The find duplicate experiment (Section 5.1) supported this result and showed that in
practice only small numbers of examples (<25) are necessary. Future work should fur-
ther test this result on other domains, such as learning from visual data or learn efficient
taleo-reactive programs [27]. We would also like to investigate whether Metaopt can be
used to learn minimal space complexity programs.

Noise handling In all of our experiments, we have assumed noise-free examples, which
means that a learned program must be consistent with all examples. This assumption
restricts MIL from being applied to noisy problems. To address this limitation, we could
relax the requirement that a program must be consistent with all examples. One method,
similar to the one used by [20], is to repeatedly learn programs from random subsets of
the examples, and to then calculate confidence levels of the learned programs based on
the size of the subsets and the number of repetitions.
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Program complexity analysis Metaopt uses iterative descent to continually reduce the
hypothesis space to prune programs that are less efficient than already learned ones.
However, this approach is inefficient when the first found program (in the first iteration
of iterative descent) has a prohibitively high cost. For instance, suppose you are learning
to sort lists and that the shortest program in the hypothesis space is permutation sort.
Then in the first iteration of iterative descent, Metaopt would find permutation sort,
which would require O(n!) time. If the examples are large, then this approach would
be impractical. To overcome this issue, iterative descent could start with a low program
cost bound and then iteratively relax this bound until the first program is found. Once
a program has been found, iterative descent could then work as it does now and search
for more efficient programs by continually restricting the hypothesis space. Alternatively,
we could estimate the tree complexity of a program by approximating the SLD-tree size
[12].

Algorithm discovery We have used Metaopt to learn efficient programs, such as an effi-
cient quicksort robot strategy and an efficient find duplicate program. However, although
the learning techniques are novel, the learned programs are not, i.e. we have learned
programs that we already knew about. In future work, we want to use Metaopt for algo-
rithm discovery, where the goal is to learn programs that are useful and novel.
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