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Abstract We introduce learning programs by learning from failures. In this approach, an
inductive logic programming (ILP) system (the learner) decomposes the learning prob-
lem into three separate stages: generate, test, and constrain. In the generate stage, the
learner generates a hypothesis (a logic program) that satisfies a set of hypothesis con-
straints (constraints on the syntactic form of hypotheses). In the test stage, the learner
tests the hypothesis against training examples. A hypothesis fails when it does not entail
all the positive examples or entails a negative example. If a hypothesis fails, then, in the
constrain stage, the learner learns constraints from the failed hypothesis to prune the
hypothesis space, i.e. to constrain subsequent hypothesis generation. For instance, if a
hypothesis is too general (entails a negative example), the constraints prune generali-
sations of the hypothesis. If a hypothesis is too specific (does not entail all the positive
examples), the constraints prune specialisations of the hypothesis. This loop repeats un-
til (1) the learner finds a hypothesis that entails all the positive and none of the negative
examples, or (2) there are no more hypotheses to test. We implement our idea in Popper,
an ILP system which combines answer set programming and Prolog. Popper supports in-
finite domains, reasoning about lists and numbers, learning optimal (textually minimal)
programs, and learning recursive programs. Our experimental results on three diverse
domains (number theory problems, robot strategies, and list transformations) show that
(1) constraints drastically improve learning performance, and (2) Popper can substan-
tially outperform state-of-the-art ILP systems, both in terms of predictive accuracies and
learning times.

1 Introduction

Inductive logic programming (ILP) (Muggleton, 1991) is a form of machine learning.
Given positive and negative examples of a target predicate and background knowledge
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(BK), the ILP problem is to induce a hypothesis which, with the BK, entails as many
positive and as few negative examples as possible. ILP represents the examples, BK, and
hypotheses as logic programs (sets of logical rules).

Compared to most machine learning approaches, ILP has several advantages. ILP
systems can generalise from small numbers of examples, often a single example (Lin
et al., 2014). Because hypotheses are logic programs, they can be read by humans, cru-
cial for explainable AI and ultra-strong machine learning (Michie, 1988). Moreover, be-
cause ILP systems learn logic programs, ILP is also a form of program synthesis (Shapiro,
1983), where the goal is to automatically generate computer programs from specifi-
cations, typically input/output examples. Finally, because of their symbolic nature, ILP
systems naturally support lifelong and transfer learning (Cropper, 2019a), which is con-
sidered essential for human-like AI (Lake et al., 2016).

The fundamental problem in ILP is to efficiently search a huge (potentially infinite)
hypothesis space (the set of all hypotheses). For instance, in our simplest experiment
(Section 5.1), the hypothesis space contains approximately 1013 hypotheses. A popular
ILP approach is to use a set covering algorithm to learn hypotheses one clause at-a-
time (Quinlan, 1990; Muggleton, 1995; Blockeel and Raedt, 1998; Srinivasan, 2001;
Ahlgren and Yuen, 2013). Systems that implement this approach are often very efficient
because they are example-driven. However, these systems tend to learn overly specific
solutions and struggle to learn recursive programs (Bratko, 1999; Cropper et al., 2020).
An alternative, but increasingly popular, approach is to encode the ILP problem as a
SAT problem (Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2018; Evans and
Grefenstette, 2018; Evans et al., 2019). Systems that implement this approach can of-
ten learn optimal and recursive programs. Moreover, they can use efficient SAT solvers
based on conflict-driven clause learning. However, the major limitation of these systems
is scalability, especially in terms of the domain size.

In this paper, we introduce an ILP approach called learning programs by learning
from failures, largely inspired by Karl Popper’s idea of falsification (Popper, 2005) and
Shapiro’s seminal program synthesis work (Shapiro, 1983). In our approach, the learner
(an ILP system) decomposes the ILP problem into three separate stages: generate, test,
and constrain. In the generate stage, the learner generates a hypothesis (a logic pro-
gram) that satisfies a set of hypothesis constraints (constraints on the syntactic form of
hypotheses). Importantly, in this step, the learner ignores the BK and examples, and in-
stead focuses on finding a constraint satisfying hypothesis. In the test stage, the learner
tests a hypothesis against training examples. A hypothesis fails when it does not entail
all the positive examples or entails a negative example. If a hypothesis fails, then, in
the constrain stage, the learner learns hypothesis constraints from the failed hypothe-
sis to prune the hypothesis space, i.e. to constrain subsequent hypothesis generation.
For instance, if a hypothesis is too general (entails a negative example), the constraints
prune generalisations of the hypothesis. If a hypothesis is too specific (does not entail all
the positive examples), the constraints prune specialisations of the hypothesis. This loop
repeats until (1) the learner finds a solution (a hypothesis that entails all the positive
examples and none of the negative examples), or (2) there are no more hypotheses to
test. Figure 1 illustrates this loop.

Example 1 (Learning from failures) To illustrate our approach, consider learning a last/2
hypothesis to find the last element of a list. For simplicity, assume an initial hypothesis
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Fig. 1: The generate, test, and constrain loop.
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h1 =
�

last(A,B):- head(A,B).
	

h2 =
�

last(A,B):- head(A,B),empty(A).
	

h3 =
�

last(A,B):- head(A,B),reverse(A,C),head(C,B).
	

h4 =
�

last(A,B):- tail(A,C),head(C,B).
	

h5 =
�

last(A,B):- reverse(A,C),head(C,B).
	

h6 =
§

last(A,B):- tail(A,C),head(C,B).
last(A,B):- reverse(A,C),head(C,B).

ª

h7 =
§

last(A,B):- tail(A,C),head(C,B).
last(A,B):- tail(A,C),tail(C,D),head(D,B).

ª

h8 =
§

last(A,B):- reverse(A,C),tail(C,D),head(D,B).
last(A,B):- tail(A,C),reverse(C,D),head(D,B).

ª



































































Also assume we have the positive (E+) and negative (E−) examples:

E+ =
§

last([l,a,u,r,a],a).
last([p,e,n,e,l,o,p,e],e).

ª

E− =
§

last([e,m,m,a],m).
last([j,a,m,e,s],e).

ª

In the generate stage, the learner generates a hypothesis:

h1 =
�

last(A,B):- head(A,B).
	

In the test stage, the learner tests h1 against the examples and finds that it fails because it
does not entail any positive example and is therefore too specific. In the constrain stage,
the learner learns hypothesis constraints to prune specialisations of h1 (h2 and h3) from
the hypothesis space. The hypothesis space is now:

H2 =











































h4 =
�

last(A,B):- tail(A,C),head(C,B).
	

h5 =
�

last(A,B):- reverse(A,C),head(C,B).
	

h6 =
§

last(A,B):- tail(A,C),head(C,B).
last(A,B):- reverse(A,C),head(C,B).

ª

h7 =
§

last(A,B):- tail(A,C),head(C,B).
last(A,B):- tail(A,C),tail(C,D),head(D,B).

ª

h8 =
§

last(A,B):- reverse(A,C),tail(C,D),head(D,B).
last(A,B):- tail(A,C),reverse(C,D),head(D,B).

ª
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In the next generate stage, the learner generates another hypothesis:

h4 =
�

last(A,B):- tail(A,C),head(C,B).
	

The learner tests h4 against the examples and finds that it fails because it entails the
negative example last([e,m,m,a],m) and is therefore too general. The learner learns
constraints to prune generalisations of h4 (h6 and h7) from the hypothesis space. The
hypothesis space is now:

H3 =







h5 =
�

last(A,B):- reverse(A,C),head(C,B).
	

h8 =
§

last(A,B):- reverse(A,C),tail(C,D),head(D,B).
last(A,B):- tail(A,C),reverse(C,D),head(D,B).

ª







The learner generates another hypothesis (h5), tests it against the examples, finds that
it does not fail, and returns it.

There are two key ideas to our approach. Rather than refine a clause (Quinlan, 1990;
Muggleton, 1995; Raedt and Bruynooghe, 1993; Blockeel and Raedt, 1998; Srinivasan,
2001; Ahlgren and Yuen, 2013), or refine a hypothesis (Shapiro, 1983; Bratko, 1999;
Athakravi et al., 2013; Cropper and Muggleton, 2016), our first key idea is to refine the
hypothesis space through learned hypothesis constraints. In other words, our key idea is to
continually build a set of meta-constraints to constrain the hypothesis space. The more
constraints we learn, the more we reduce the hypothesis space. By reasoning about the
hypothesis space, our approach can drastically prune large parts of the hypothesis space
by testing a single hypothesis. Our second key idea is to decompose the ILP problem
into entirely separate tasks: generate, test, and constrain. This idea allows for flexibility
in how to implement our idea. Moreover, decomposing the problem allows for greater
scalability with respect to the problem size (particularly the domain size and the number
of training examples). In other words, decomposing the problem alleviates the combi-
natorial explosion problem faced by approaches that frame the ILP problem as a single
SAT problem (Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2018; Evans and
Grefenstette, 2018; Evans et al., 2019).

We implement our idea in Popper1, a new ILP system which combines answer set
programming (ASP) (Gebser et al., 2012) and Prolog. In the generate stage, Popper uses
ASP to declaratively define, constrain, and search the hypothesis space. The idea is to
define an ASP problem where an answer set (a model) corresponds to a definite pro-
gram. By later learning hypothesis constraints, we eliminate answer sets and thus prune
the hypothesis space. Importantly, this stage ignores the examples and BK so that the
search is focused on finding a constraint satisfying hypothesis. Our first motivation for
using ASP is its declarative nature, which allows us to, for instance, define constraints to
enforce Datalog and type restrictions, constraints to prune recursive hypotheses that do
not contain base cases, and constraints to prune generalisations and specialisations of a
failed hypothesis. Our second motivation is to use state-of-the-art ASP systems (Gebser
et al., 2014) to efficiently solve our complex constraint problem. In the test stage, Pop-
per uses Prolog to test hypotheses against the examples and BK. Our main motivation

1 Popper is named after Karl Poppper, whose idea of falsification (Popper, 2005) inspired our approach, as it
did Shapiro’s MIS approach (Shapiro, 1983). In fact, one can view our approach as Popper’s idea of
falsification, where a failure is a refutation/falsification. In other words, in our approach, a learner deduces
what hypotheses cannot be true and prunes them from the hypothesis space, leaving only hypotheses not
yet refuted.



Learning programs by learning from failures 5

for using Prolog in this stage is to learn programs that use lists, numbers, and infinite
domains. In the constrain stage, Popper learns hypothesis constraints (in the form of
ASP constraints) from failed hypotheses to prune the hypothesis space, i.e. to constraint
subsequent hypothesis generation. To efficiently combine the three stages, Popper uses
ASP’s multi-shot solving (Gebser et al., 2019) to maintain state between the three stages,
e.g. to remember learned conflicts on the hypothesis space.

To give a clear overview of Popper, Table 1 compares Popper to Progol (Muggleton,
1995), a classical ILP system, and Metagol (Cropper and Muggleton, 2016), ILASP2 (Law
et al., 2014), and ∂ ILP (Evans and Grefenstette, 2018), three state-of-the-art ILP systems
based on Prolog, ASP, and neural networks respectively. Compared to Progol, Popper
can learn optimal and recursive programs. Compared to Metagol, Popper does not need
metarules (Cropper and Tourret, 2019), so can learn programs with any arity predicates.
Compared to ILASP and ∂ ILP, Popper supports large and infinite domains. Compared to
all the systems, Popper supports hypothesis constraints3, such as disallowing the co-
occurrence of predicate symbols in a program or disallowing recursive hypotheses that
do not contain base cases.

Progol Metagol ILASP ∂ ILP Popper

Hypotheses Normal Definite ASP Datalog Definite
Language bias Modes Metarules Modes Templates Declarations
Predicate invention No Yes Partly Partly No
Noise handling Yes No Yes Yes No
Recursion Partly Yes Yes Yes Yes
Optimality No Yes Yes Yes Yes
Infinite domains Yes Yes No No Yes
Hypothesis constraints No No No No Yes

Table 1: A simplified comparison of ILP systems. Note that Progol, Metagol, and Popper
also induce Datalog programs, since Datalog is a subset of definite programs. Progol
can learn recursive programs but struggles because it requires examples of both the base
and inductive cases. Metagol supports automatic predicate invention, whereas ILASP and
∂ ILP support prescriptive predicate invention (Cropper et al., 2019a), where the arity and
argument types of an invented predicate must be specified by the given language bias.

Overall our specific contributions in this paper are:

– We define our problem setting, introduce our simple language bias called predicate
declarations, introduce hypothesis constraints, calculate the size of the hypothesis
space, define hypothesis generalisations and specialisations, and introduce the idea
of learning from failures (Section 3).

– We introduce Popper, an ILP system that learns definite programs (Section 4). Popper
uses ASP to declaratively define, constrain, and search the hypothesis space and Pro-
log to test hypotheses. Popper support types, learning optimal (textually minimal)
solutions, learning recursive programs, reasoning about lists and infinite domains,

2 There are many versions of ILASP. Unless otherwise stated, any reference to ILASP is to the set of ILASP systems.
3 Law et al. (2018) also uses the term hypothesis constraints to describe the ILP system ILASP3. However, the

authors replace that term with hypothesis schemas in the main reference for ILASP3 (Law, 2018). As we
explain in Section 2.8, our notion of a hypothesis constraint is different to a hypothesis schema.
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and the novel feature of hypothesis constraints. We show that Popper is sound and
complete with respect to optimal solutions (Theorem 1).

– We experimentally show (Section 5) on three diverse domains (number theory prob-
lems, robot strategies, and list transformations) that (1) constraints drastically re-
duce the hypothesis space, (2) Popper can substantially outperform state-of-the-art
ILP systems Metagol, ILASP, and FastLAS (Law et al., 2020), both in terms of pre-
dictive accuracies and learning times, (3) Popper scales well with respect to domain
size, the number of training examples, and the size of the training examples, and (4)
Popper is reasonably robust to its parameters.

2 Related work

2.1 Program synthesis

The goal of program synthesis is to automatically generate a computer program from a
specification. Program synthesis from examples (Summers, 1977; Shapiro, 1983) inter-
ests researchers from many areas of computer science, notably machine learning (ML)
and programming languages (PL). The major4 difference between ML and PL approaches
is the generality of solutions (synthesised programs). PL approaches often aim to find
any program that fits the specification, regardless of whether it generalises. Indeed, PL
approaches rarely evaluate the ability of their systems to synthesise solutions that gen-
eralise, i.e. they do not measure predictive accuracy (Polikarpova et al., 2016; Albargh-
outhi et al., 2017; Feng et al., 2018; Raghothaman et al., 2020). By contrast, the major
challenge in ML is learning hypotheses that generalise to unseen examples. Indeed, it is
often trivial for an ML system to learn an overly specific solution for a given problem. For
instance, an ILP system can trivially construct the bottom clause (Muggleton, 1995) for
each example. Because of this major difference, in the rest of this section, we focus on
ML approaches to program synthesis. We first, however, briefly cover two PL approaches,
which share similarities to our learning from failures idea.

Neo (Feng et al., 2018) synthesises non-recursive programs using SAT and SMT
solvers. Neo inherently requires SMT specifications for domain specific background func-
tions and predicates (i.e. background knowledge). For instance, the specification for
head, taking an input list and returning an output list, is the formula input.size ≥
1 ∧ output.size = 1 ∧ output.max ≤ input.max . Our approach does not need such
definitions for the BK. We only need to evaluate hypotheses to determine their truth
or falsity with respect to examples. Neo cannot synthesise recursive programs, nor is it
guaranteed to synthesise optimal (textually minimal) programs. By contrast, Popper can
learn optimal and recursive logic programs.

ProSynth (Raghothaman et al., 2020) takes as input a set of candidate Datalog rules
and returns a subset of them. ProSynth learns constraints that disallow certain clause
combinations, e.g. to prevent clauses that entail a negative example from occurring to-
gether. Popper differs from ProSynth in several ways. ProSynth takes as input the full
hypothesis space (the set of candidate rules). By contrast, Popper does not fully con-
struct the hypothesis space. This difference is important because it is often infeasible
to pre-compute the full hypothesis space. For instance, the largest number of candidate
rules considered in the ProSynth experiments is 1000. By contrast, in our simplest exper-
iment (Section 5.1), the hypothesis space contains approximately 1013 rules. ProSynth

4 Minor differences include the form of specification and noise handling.
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provides no guarantees about solution size. By contrast, Popper is guaranteed to learn an
optimal (smallest) solution (Theorem 1). Moreover, whereas ProSynth synthesises Dat-
alog programs, Popper additionally learns definite programs, and thus supports learning
programs with infinite domains.

2.2 Inductive logic programming

There are various ML approaches to program synthesis, including neural approaches
(Balog et al., 2017; Ellis et al., 2018,0). We focus on inductive logic programming (ILP)
(Muggleton, 1991). As with other forms of ML, given positive and negative examples,
the goal of an ILP system is to learn a hypothesis which correctly explains as many
positive and as few negative examples as possible. However, whereas most forms of ML
represent data (examples and hypotheses) as tables (i.e. vectors), ILP represents data as
logic programs. Moreover, whereas most forms of ML learn functions, ILP learns relations.

2.3 Recursion

Learning recursive programs has long been considered a difficult problem in ILP (Mug-
gleton et al., 2012). Without recursion, it is often difficult for an ILP system to generalise
from small numbers of examples (Cropper et al., 2015). Indeed, many popular ILP sys-
tems, such as FOIL (Quinlan, 1990), Progol (Muggleton, 1995), TILDE (Blockeel and
Raedt, 1998), and Aleph (Srinivasan, 2001), struggle to learn recursive programs. The
reason is that they employ a set covering approach to build a hypothesis clause by clause.
Each clause is usually found by searching an ordering over clauses. A common approach
is to pick an uncovered example, generate the bottom clause (Muggleton, 1995) for this
example, the logically most specific clause that entails the example, and then to search
the subsumption lattice (either top down or bottom up) bounded by this bottom clause.
Systems that implement this approach are often very efficient because the hypothesis
search is example driven. However, these systems tend to learn overly specific solutions
and struggle to learn recursive programs (Bratko, 1999; Cropper et al., 2020). To over-
come this limitation, Popper searches over logic programs (sets of clauses), a technique
used by other ILP systems (Bratko, 1999; Athakravi et al., 2013; Law et al., 2014; Crop-
per and Muggleton, 2016; Evans and Grefenstette, 2018; Kaminski et al., 2018).

2.4 Optimality

There are often multiple (sometimes infinite) hypotheses that explain the data. Deciding
which hypothesis to choose is a difficult problem. Progol, Aleph, TILDE, and XHAIL (Ray,
2009) are not guaranteed to learn optimal solutions, where optimal typically means the
smallest program or the program with the minimal description length. The claimed ad-
vantage of learning optimal solutions is better generalisation. Recent ILP approaches,
especially those that encode the ILP problem as a SAT problem, learn optimal solutions,
such as programs with the fewest clauses (Muggleton et al., 2015; Cropper and Mug-
gleton, 2016; Kaminski et al., 2018) or literals (Corapi et al., 2011; Law et al., 2014).
Popper also learns optimal solutions, measured as the total number of literals in the
hypothesis.
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2.5 Language bias

ILP approaches use a language bias (Nienhuys-Cheng and Wolf, 1997) to restrict the
hypothesis space. Language bias can be categorised as syntactic bias, which restricts the
syntax of hypotheses, such as the number of variables allowed in a clause, and seman-
tic bias, which restricts hypotheses based on their semantics, such as whether they are
functional, irreflexive, etc.

Mode declarations (Muggleton, 1995) are a popular language bias (Blockeel and
Raedt, 1998; Srinivasan, 2001; Ray, 2009; Corapi et al., 2010,0; Athakravi et al., 2013;
Ahlgren and Yuen, 2013; Law et al., 2014). Mode declarations state which predicate
symbols may appear in a clause, how often they may appear, what their arguments types
are, and whether their arguments must be ground. We do not use mode declarations. We
instead use a simple language bias which we call predicate declarations (Section 3), where
a user needs only state whether a predicate symbol may appear in the head or/and body
of a clause, similar to determinations in Aleph (Srinivasan, 2001). In our approach, a user
can additionally provide other language biases, such as type information, as hypothesis
constraints (Section 2.8).

Metarules (Cropper and Tourret, 2019) are another popular syntactic bias used by
many program synthesis approaches (Raedt and Bruynooghe, 1992; Wang et al., 2014;
Albarghouthi et al., 2017; Kaminski et al., 2018), including Metagol (Muggleton et al.,
2015; Cropper et al., 2019b; Cropper and Muggleton, 2016) and, to an extent5, ∂ ILP
(Evans and Grefenstette, 2018). A metarule is a higher-order clause which defines the
exact form of clauses in the hypothesis space. For instance, the chain metarule is of
the form P(A, B)← Q(A, C), R(C , B), where P, Q, and R denote predicate variables, and
allows for instantiated clauses such as last(A,B):- reverse(A,C),head(C,B). Com-
pared with predicate (and mode) declarations, metarules are a much stronger inductive
bias because they specify the exact form of clauses in the hypothesis space. However, the
major problem with metarules is determining which ones to use (Cropper and Tourret,
2019). A user must either (1) provide a set of metarules, or (2) use a set of metarules re-
stricted to a certain fragment of logic, e.g. dyadic Datalog (Cropper and Tourret, 2019).
This limitation means that ILP systems that use metarules are difficult to use, especially
when the BK contains predicate symbols with arity greater than two. If suitable metarules
are known, then, as we show in Appendix A, Popper can simulate metarules through hy-
pothesis constraints.

2.6 SAT approaches and infinite domains

An increasingly popular ILP approach is to encode the ILP problem as a SAT problem
(Corapi et al., 2011; Athakravi et al., 2013; Law et al., 2014; Kaminski et al., 2018;
Evans and Grefenstette, 2018; Evans et al., 2019).

Datalog is the target language of many ILP systems (Muggleton et al., 2014,0; Kamin-
ski et al., 2018; Evans and Grefenstette, 2018; Evans et al., 2019). One motivation for
learning Datalog, rather than Prolog, programs is to allow the ILP problem to be encoded
as a SAT problem, particularly to leverage recent developments in SAT and SMT. This en-
coding is possible because a Datalog query is guaranteed to terminate – although this
termination guarantee comes at the expense of not being a Turing-complete language.

5 ∂ ILP uses program templates to essentially generate sets of metarules.
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A major limitation with these approaches is that they mostly encode the ILP problem as
a single (often very large) SAT problem and thus struggle to scale to large problems.

Recent work in ILP uses ASP to learn Datalog (Evans et al., 2019), definite (Mug-
gleton et al., 2014; Kaminski et al., 2018; Cropper and Dumancic, 2020), normal (Ray,
2009; Corapi et al., 2011; Athakravi et al., 2013), and answer set programs (Law et al.,
2014). Like Datalog, ASP is a truly declarative language. However, compared to Datalog,
ASP is more expressive, allowing, for instance, aggregates, a form of disjunction in the
head of a clause, and hard and weak constraints. Most ASP solvers only work on ground
programs (Gebser et al., 2014)6. Therefore, a major limitation of pure ASP-based ILP
systems is the intrinsic grounding problem, especially on large domains, such as rea-
soning about lists or numbers – most ASP implementations do not support lists nor real
numbers. For instance, ILASP (Law et al., 2014) can represent real numbers as strings
and delegate the reasoning to Python via Clingo’s scripting feature (Gebser et al., 2014).
However, in this approach, the numeric computation is performed when grounding the
inputs, so the grounding must be finite. This grounding problem also implies that such
systems do not support infinite domains. Difficulty handling large (or infinite) domains is
not specific to ASP, and applies to other pure SAT-based approaches, even those based on
neural networks, such as ∂ ILP, which only works on BK formed of a finite set of ground
atoms. To overcome this limitation, Popper combines ASP and Prolog. Popper uses ASP to
generate definite programs, which allows it to reason about large and infinite domains,
such as reasoning about lists and numbers.

2.7 Generate, test, and constrain

A key idea of our approach is to reason about the hypothesis space. Rather than refine a
clause (Quinlan, 1990; Muggleton, 1995; Raedt and Bruynooghe, 1993; Blockeel and
Raedt, 1998; Srinivasan, 2001; Ahlgren and Yuen, 2013), or a hypothesis (Shapiro,
1983; Bratko, 1999; Athakravi et al., 2013; Cropper and Muggleton, 2016), we refine
the hypothesis space through learned hypothesis constraints. In other words, our key idea
is to continually build a set of meta-constraints to constrain the hypothesis space. The
more constraints we learn, the more we reduce the hypothesis space. By reasoning about
the hypothesis space, our approach can drastically prune large parts of the hypothesis
space by testing a single hypothesis.

Atom (Ahlgren and Yuen, 2013) also learns definite programs using SAT solvers and
learns constraints. However, because it builds on Progol (Muggleton, 1995), and thus
employs inverse entailment, Atom struggles to learn recursive programs because it needs
examples of both the base and step case (in that order) of a recursive program. More-
over, for the same reason, Atom struggles to learn optimal solutions. By contrast, Popper
imposes no such conditions because it learns programs rather than individual clauses.

The ILASP systems (Law et al., 2014,0,0), notably ILASP3 (Law, 2018), also follow
a generate, test, and constrain loop. We focus on ILASP3, ILASP3 is a pure ASP-based
ILP system. ILASP3 takes as input the full hypothesis space of ground clauses defined
by given mode declarations. Each clause is given a unique id. The ILASP3 task is to find
a subset of the clauses which covers as many positive and as few negative examples as
possible. ILASP3 also tests hypotheses to generate constraints. If a hypothesis is not an
optimal solution, ILASP3 translates an example into a set of coverage constraints over the

6 A notable exception is Alpha Solver (Weinzierl, 2017).
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hypothesis space. We refer the reader to the work of Law (2018) for a detailed descrip-
tion, but, at a very high-level, a coverage constraint states that specific clauses must or
must not be in a hypothesis (remember that ILASP3 precomputes the hypothesis space
and assigns each clause a unique identifier).

Popper is similar to ILASP3 in that it follows a generate, test, and constrain loop.
However, Popper differs from ILASP3 in several ways. ILASP3 learns unstratified ASP
programs, including programs with normal rules, choice rules, and both hard and weak
constraints. By contrast, Popper learns definite programs, typically described as Prolog
programs, including programs with functions symbols, real numbers, and infinite do-
mains. ILASP3 requires the full hypothesis space of pre-generated clauses as input. By
contrast, Popper never fully constructs the hypothesis space, which allows it to scale
better to larger programs (Section 5). If a hypothesis is non-optimal, ILASP3 finds a rel-
evant example which it translates into a set of coverage constraints over the hypothesis
space. By contrast, in our approach, when a hypothesis fails, we translate the hypothe-
sis into a set of hypothesis constraints. Our hypothesis constraints are different because
they do not reason about specific clauses (because we do not precompute the hypothesis
space), but instead reason about the structure of hypotheses, i.e. are meta-constraints.
Finally, ILASP3 is based entirely on ASP and the generate, test, and constrain stages are
closely aligned. By contrast, Popper completely separates the generate, test, and con-
strain stages, where the generate stage ignores the examples and BK to alleviate the
inherent grounding problem faced by ILASP3, which limits it to small domains (which
we experimentally show in Section 5).

FastLAS (Law et al., 2020) builds on ILASP. The key difference is that FastLAS does
not take the full hypothesis space as input. Instead it uses something similar to bottom
clause construction (Muggleton, 1995) to find a subset of the hypothesis space. FastLAS
does not, however, support recursion.

The general generate, test, and constrain approach can be traced back to Shapiro’s
seminal program synthesis work on the model inference system (MIS) (Shapiro, 1983),
which, like our approach, was heavily inspired by Karl Popper’s idea of falsification (Pop-
per, 2005). MIS is a top-down, incremental, and interactive ILP approach which spe-
cialises and generalises a theory until it covers all of the positive and one of the nega-
tive examples. However, whereas MIS refines a hypothesis, by either deleting incorrect
clauses or specialising clauses, our approach works at the meta-level, and refines the
hypothesis space through learned hypothesis constraints.

2.8 Hypothesis constraints

Constraints are fundamental to our idea. Many ILP systems allow a user to constrain the
hypothesis space though clause constraints (Muggleton, 1995; Srinivasan, 2001; Block-
eel and Raedt, 1998; Ahlgren and Yuen, 2013; Law et al., 2014). For instance, Progol,
Aleph, and TILDE allow for a user to provide constraints on clauses that should not be
violated. Popper also allows a user to provide clause constraints. Popper additionally al-
lows a user to provide hypothesis constraints (or meta-constraints)7, which are constraints
over a whole hypothesis (a set of clauses), not an individual clause. As a trivial example,
suppose you want to disallow two predicate symbols p/2 and q/2 from both simultane-
ously appearing in a program (in any body literal in any clause). Then, because Popper

7 The term hypothesis constraint is also used by Srinivasan and Kothari (2005) and Costa et al. (2003) as an
optional set of constraints on acceptable hypotheses, but without any further explanation.
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reasons at the meta-level, this restriction is trivial to express:

:- body_literal(_,p,2,_), body_literal(_,q,2,_).

We introduce this meta-level encoding in Section 4, but the constraint prunes hypotheses
where the predicate symbols p/2 and q/2 both appear in the body of a hypothesis (possi-
bly in different clauses). The key thing to notice is the ease, uniformity, and succinctness
of expressing constraints. We argue that declarative hypothesis constraints have many
advantages. For instance, through hypothesis constraints, Popper can enforce (optional)
type, metarule, recall, and functionality restrictions. Moreover, hypothesis constraints
allow us to prune recursive programs without a base case and subsumption redundant
programs. Finally, and most importantly, hypothesis constraints allow us to prune gener-
alisations and specialisations of failed hypotheses, which we discuss in the next section.

3 Problem setting

We now define our problem setting, introduce our simple language bias called predicate
declarations, introduce hypothesis constraints, calculate the size of the hypothesis space,
define hypothesis generalisations and specialisations, and introduce our idea of learning
from failures.

3.1 Logic preliminaries

We assume familiarity with logic programming notation (Lloyd, 2012) but we restate
some key terminology. All sets are finite unless otherwise stated. A clause is a set of
literals. A clausal theory is a set of clauses. A Horn clause is a clause with at most one
positive literal. A Horn theory is a set of Horn clauses. A definite clause is a Horn clause
with exactly one positive literal. A definite theory is a set of definite clauses. A Horn clause
is a Datalog clause if (1) it contains no function symbols, and (2) every variable that
appears in the head of the clause also appears in the body of the clause. A Datalog theory
is a set of Datalog clauses. Simultaneously replacing variables v1, . . . , vn in a clause with
terms t1, . . . , tn is a substitution and is denoted as θ = {v1/t1, . . . , vn/tn}. A substitution
θ unifies atoms A and B when Aθ = Bθ . We will often use program as a synonym for
theory, e.g. a definite program as a synonym for a definite theory.

3.2 Problem setting

Our problem setting is based on the ILP learning from entailment setting (Raedt, 2008).
Our goal is to take as input positive and negative examples of a target predicate, back-
ground knowledge (BK), and to return a hypothesis (a logic program) that with the
BK entails all the positive and none of the negative examples. In this paper, we focus on
learning definite programs. We will generalise the approach to non-monotonic programs
in future work.

ILP approaches search a hypothesis space, the set of learnable hypotheses: ILP ap-
proaches restrict the hypothesis space through a language bias (Section 2.5). Several
forms of language bias exist, such as mode declarations (Muggleton, 1995), grammars
(Cohen, 1994) and metarules (Cropper and Tourret, 2019). We use a simple language
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bias which we call predicate declarations, which are similar to Aleph’s determinations
(Srinivasan, 2001). A predicate declaration simply states which predicate symbols may
appear in the head (head declarations) or body (body declarations) of a clause in a hy-
pothesis:

Definition 1 (Head declaration) A head declaration is a ground atom of the form
head_pred(p,a) where p is a predicate symbol of arity a.

Definition 2 (Body declaration) A body declaration is a ground atom of the form body_pred(p,a)
where p is a predicate symbol of arity a.

A declaration bias D is a pair (Dh, Db) of sets of head (Dh) and body (Db) declarations.
We define a declaration consistent clause:

Definition 3 (Declaration consistent clause) Let D = (Dh, Db) be a declaration bias
and C = h← b1, b2, . . . , bn be a definite clause. Then C is declaration consistent with D
if and only if:

– h is an atom of the form p(X1, . . . , Xn) and head_pred(p,n) is in Dh
– every bi is a literal of the form p(X1, . . . , Xn) and body_pred(p, n) is in Db
– every X i is a first-order variable

Example 2 (Declaration consistency) Let D be the declaration bias:

({head_pred(targ,2)}, {body_pred(head,2), body_pred(tail,2)})

Then the following clauses are all consistent with D:

targ(A,B):- head(A,C).
targ(A,A):- head(B,A).
targ(A,B):- head(A,C),tail(C,B).

By contrast, the following clauses are inconsistent with D:

targ(A):- head(A,C).
targ(A,B):- targ(A,B).
tail(A,B):- reverse(A,C),tail(C,B).

We define a declaration consistent hypothesis:

Definition 4 (Declaration consistent hypothesis) A declaration consistent hypothesis
H is a set of definite clauses where each C ∈ H is declaration consistent with D.

Example 3 (Declaration consistent hypothesis) Let D be the declaration bias:

({head_pred(targ,2)}, {body_pred(head,2), body_pred(tail,2)})

Then two declaration consistent hypotheses are:

h1 :
�

targ(A,B):- head(A,B)
	

h2 :
§

targ(A,B):- head(A,B).
targ(A,B):- tail(A,C),head(C,B).

ª

In addition to a declaration bias, we restrict the hypothesis space through hypothesis
constraints. We first clarify what we mean by a constraint:
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Definition 5 (Constraint) A constraint is a Horn clause without a head, i.e. a denial.
We say that a constraint is violated if all of its body literals are true.

Rather than define hypothesis constraints for a specific encoding (e.g. the encoding we
use in Section 4), we use a more general definition:

Definition 6 (Hypothesis constraint) Let L be a language that defines hypotheses,
i.e. a meta-language. Then a hypothesis constraint is a constraint expressed in L .

Example 4 In Section 4, we introduce a meta-language for definite programs. In our
encoding, the atom head_literal(Clause,Pred,Arity,Vars) denotes that the clause
Clause has a head literal with the predicate symbol Pred, is of arity Arity, and has the
arguments Vars. An example hypothesis constraint in this language is:

:- head_literal(_,p,2,_).

This constraint states that a predicate symbol p of arity 2 cannot appear in the head of
any clause in a hypothesis.

Example 5 In our encoding, the atom body_literal(Clause,Pred,Arity,Vars) de-
notes that the clause Clause has a body literal with the predicate symbol Pred, is of
arity Arity, and has the arguments Vars. An example hypothesis constraint in this lan-
guage is:

:- head_literal(_,p,2,_), body_literal(_,p,2,_).

This constraint states that the predicate symbol p cannot appear in the body of a clause
if it appears in the head of a clause (not necessarily the same clause).

We define a constraint consistent hypothesis:

Definition 7 (Constraint consistent hypothesis) Let C be a set of hypothesis con-
straints written in a language L . A set of definite clauses H is consistent with C if, when
written in L , H does not violate any constraint in C .

We now define our hypothesis space:

Definition 8 (Hypothesis space) Let D be a declaration bias and C be a set of hy-
pothesis constraints. Then the hypothesis space HD,C is the (possibly infinite) set of all
declaration and constraint consistent hypotheses. We refer to any element in HD,C as a
hypothesis.

We define our problem input:

Definition 9 (Problem input) Our problem input is a tuple (B, D, C , E+, E−) where

– B is a Horn program denoting background knowledge
– D is a declaration bias
– C is a set of hypothesis constraints
– E+ is a set of ground atoms denoting positive examples
– E− is a set of ground atoms denoting negative examples
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Note that C , E+, and E− can be empty sets. In other words, our approach does not need
both positive and negative examples, and can work with only positive or only negative
examples. We assume that no predicate symbol in the body of a clause in B appears in a
head declaration of D. In other words, we assume that the BK does not depend on any
hypothesis.

For convenience, we define different types of hypotheses, mostly using standard ILP
terminology (Nienhuys-Cheng and Wolf, 1997):

Definition 10 (Hypothesis types) Let (B, D, C , E+, E−) be an input tuple and H ∈HD,C
be a hypothesis. Then H is:

– Complete when ∀e ∈ E+ H ∪ B |= e
– Consistent when ∀e ∈ E−, H ∪ B 6|= e
– Incomplete when ∃e ∈ E+, H ∪ B 6|= e
– Inconsistent when ∃e ∈ E−, H ∪ B |= e
– Totally incomplete when ∀e ∈ E+, H ∪ B 6|= e

We define a solution, i.e. our problem output:

Definition 11 (Solution) Given an input tuple (B, D, C , E+, E−), a hypothesis H ∈HD,C
is a solution when H is complete and consistent.

Conversely, we define a failed hypothesis:

Definition 12 (Failed hypothesis) Given an input tuple (B, D, C , E+, E−), a hypothesis
H ∈HD,C fails (or is a failed hypothesis) when H is either incomplete or inconsistent.

There may be multiple (sometimes infinite) solutions. We want to find the smallest so-
lution:

Definition 13 (Hypothesis size) The function size(H) returns the total number of lit-
erals in the hypothesis H.

We define an optimal solution:

Definition 14 (Optimal solution) Given an input tuple (B, D, C , E+, E−), a hypothesis
H ∈HD,C is an optimal solution when two conditions hold:

– H is a solution
– ∀H ′ ∈HD,C , such that H ′ is a solution, size(H)≤ size(H ′)

In Section 4, we introduce Popper, which, given the problem input, is guaranteed to
return an optimal solution (Theorem 1).

3.3 Hypothesis space

One of the main ideas of our learning from failures approach is to reduce the size of the
hypothesis space through learned hypothesis constraints. The size of the unconstrained
hypothesis space is a function of a declaration bias and additional bounding variables:
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Proposition 1 (Hypothesis space size) Let D = (Dh, Db) be a declaration bias with a
maximum arity a, v be the maximum number of unique variables allowed in a clause,
m be the maximum number of body literals allowed in a clause, and n be the maximum
number of clauses allowed in a hypothesis. Then the maximum number of hypotheses in the
unconstrained hypothesis space is:

n
∑

j=1

�|Dh|va
∑m

i=1

�|Db |va

i

�

j

�

Proof Let C be an arbitrary clause in the hypothesis space. There are |Dh|va ways to
define the head literal of C . There are |Db|va ways to define a body literal in C . The
body of C is a set of literals. There are

�|Db |va

k

�

ways to chose k body literals. We bound

the number of body literals to m, so there are
∑m

i=1

�|Db |va

i

�

ways to chose at most m

body literals. Therefore, there are |Dh|va
∑m

i=1

�|Db |va

i

�

ways to define C . A hypothesis is
a set of definite clauses. Given n clauses, there are

�n
k

�

ways to chose k clauses to form a

hypothesis. Therefore, there are
∑n

j=1

�|Dh|va
∑m

i=1 (
|Db |v

a

i )
j

�

ways to define a hypothesis with
at most n clauses.

As this result shows, the hypothesis space is huge for non-trivial inputs, which motivates
using learned constraints to prune the hypothesis space.

3.4 Generalisations and specialisations

To prune the hypothesis space, we learn constraints to remove generalisations and special-
isations of failed hypotheses. We reason about the generality of hypotheses syntactically
through θ -subsumption (or subsumption for short) (Plotkin, 1971):

Definition 15 (Clausal subsumption) A clause C1 subsumes a clause C2 if and only if
there exists a substitution θ such that C1θ ⊆ C2.

Example 6 (Clausal subsumption) Let C1 and C2 be the clauses:

C1 = f(A,B):- head(A,B)
C2 = f(X,Y):- head(X,Y),odd(Y).

Then C1 subsumes C2 because C1θ ⊆ C2 with θ = {A/X , Y /B}.

If a clause C1 subsumes a clause C2 then C1 entails C2 (Nienhuys-Cheng and Wolf,
1997). However, if C1 entails C2 then it does not necessarily follow that C1 subsumes
C2. Subsumption is therefore weaker than entailment. However, whereas checking en-
tailment between clauses is undecidable (Church, 1936), checking subsumption between
clauses is decidable, although, in general, deciding subsumption is a NP-complete prob-
lem (Nienhuys-Cheng and Wolf, 1997).

Midelfart (1999) extends subsumption to clausal theories:

Definition 16 (Theory subsumption) A clausal theory T1 subsumes a clausal theory
T2, denoted T1 � T2, if and only if ∀C2 ∈ T2,∃C1 ∈ T1 such that C1 subsumes C2.
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Example 7 (Theory subsumption) Let h1, h2, and h3 be the clausal theories:

h1 =
�

f(A,B):- head(A,B).
	

h2 =
�

f(A,B):- head(A,B),odd(B).
	

h3 =
§

f(A,B):- head(A,B).
f(A,B):- reverse(A,C),head(C,B).

ª

Then h1 � h2, h3 � h1, and h3 � h2.

Theory subsumption also implies entailment:

Proposition 2 (Subsumption implies entailment) Let T1 and T2 be clausal theories. If
T1 � T2 then T1 |= T2.

Proof Follows trivially from the definitions of clausal subsumption (Definition 15) and
theory subsumption (Definition 16).

We use theory subsumption to define a generalisation:

Definition 17 (Generalisation) A clausal theory T1 is a generalisation of a clausal the-
ory T2 if and only if T1 � T2.

We likewise define our notion of a specialisation:

Definition 18 (Specialisation) A clausal theory T1 is a specialisation of a clausal theory
T2 if and only if T2 � T1.

In the next section, we use these definitions to define constraints to prune the hypothesis
space.

3.5 Learning constraints from failures

In the test stage of our learning from failures approach, a learner tests a hypothesis
against the examples. A hypothesis fails when it is incomplete or inconsistent. If a hy-
pothesis fails, a learner learns hypothesis constraints from the different types of failures.
We define two general types of constraints, generalisation and specialisation, which ap-
ply to any clausal theory, and show that they are sound in that they not prune solutions.
We also define an elimination constraint, specific to learning non-recursive definite pro-
grams, which we show is sound in that it does not prune optimal solutions. We describe
these constraints in turn.

3.5.1 Generalisations and specialisations

To illustrate generalisations and specialisations, suppose we have positive examples E+,
negative examples E−, background knowledge B, and a hypothesis H. First consider the
outcomes of testing H against E−:

Outcome Description Formula

Nnone H is consistent, i.e. H entails no negative example ∀e ∈ E−, H ∪ B 6|= e

Nsome H is inconsistent, i.e. H entails at least one negative example ∃e ∈ E−, H ∪ B |= e
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Suppose the outcome is Nnone, i.e. H is consistent. Then we cannot prune the hypothesis
space.

Suppose the outcome is Nsome, i.e. H is inconsistent. Then H is too general so we can
prune generalisations (Definition 17) of H. A constraint that only prunes generalisations
is a generalisation constraint:

Definition 19 (Generalisation constraint) A generalisation constraint only prunes gen-
eralisations of a hypothesis from the hypothesis space.

Example 8 (Generalisation constraint) Suppose we have the negative examples E− and
the hypothesis h:

E− =
�

last([a,n,n],a)
	

h=
�

last(A,B):- head(A,B).
	

Because h entails a negative example, it is too general, so we can prune generalisations
of it, such as h1 and h2:

h1 =
§

last(A,B):-head(A,B).
last(A,B):-tail(A,C),head(C,B).

ª

h2 =
§

last(A,B):-head(A,B).
last(A,B):-tail(A,C),head(C,B),head(A,B).

ª

We show that pruning generalisations of an inconsistent hypothesis is sound in that it
only prunes inconsistent hypotheses, i.e. does not prune consistent hypotheses:

Proposition 3 (Generalisation soundness) Let (B, D, C , E+, E−) be a problem input,
H ∈HD,C be an inconsistent hypothesis, and H ′ ∈HD,C be a hypothesis such that H ′ � H.
Then H ′ is inconsistent.

Proof Follows from Proposition 2.

Now consider the outcomes8 of testing H against E+:

Outcome Description Formula

Pall H is complete, i.e. H entails all positive examples ∀e ∈ E+, H ∪ B |= e

Psome H is incomplete, i.e. H does entail all positive examples ∃e ∈ E+, H ∪ B 6|= e

Pnone H is totally incomplete, i.e. H entails no positive examples ∀e ∈ E+, H ∪ B 6|= e

Suppose the outcome is Pall, i.e. H is complete. Then we cannot prune the hypothesis
space.

Suppose the outcome is Psome, i.e. is incomplete. Then H is too specific so we can
prune specialisations (Definition 18) of H. A constraint that only prunes specialisations
of a hypothesis is a specialisation constraint:

Definition 20 (Specialisation constraint) A specialisation constraint only prunes spe-
cialisations of a hypothesis from the hypothesis space.

8 The outcomes are not mutually exclusive.
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Example 9 (Specialisation constraint) Suppose we have the positive examples E+ and the
hypothesis h:

E+ =
§

last([b,o,b],b)
last([a,l,i,c,e],e)

ª

h=
�

last(A,B):- head(A,B).
	

Because h entails the first example but not the second it is too specific. We can therefore
prune specialisations of h, such as h1 and h2:

h1 =
�

last(A,B):- head(A,B),empty(A).
	

h2 =
�

last(A,B):- head(A,B),tail(A,C).
	

We show that pruning specialisations of an incomplete hypothesis is sound because it
only prunes incomplete hypotheses, i.e. does not prune complete hypotheses:

Proposition 4 (Specialisation soundness) Let (B, D, C , E+, E−) be a problem input, H ∈
HD,C be an incomplete hypothesis, and H ′ ∈HD,C be a hypothesis such that H � H ′. Then
H ′ is incomplete.

Proof Follows from Proposition 2.

3.5.2 Eliminations

Suppose the outcome is Pnone, i.e. H is totally incomplete. Then H is too specific so, as
with Psome, we can prune specialisations of H. However, because H is totally incomplete
(i.e does not entail any positive example), under certain assumptions, we can prune
more. If H is totally incomplete then there is no need for H to appear in a complete
non-recursive hypothesis (we illustrate why recursion matters in a moment). In other
words, if H does not entail any positive example, then no specialisation of H can appear
in an optimal non-recursive solution. We can therefore prune non-recursive hypotheses
that contain specialisations of H. We call such a constraint an elimination constraint:

Definition 21 (Elimination constraint) An elimination constraint only prunes non-
recursive hypotheses that contain specialisations of a hypothesis from the hypothesis
space.

Example 10 (Elimination constraint) Suppose we have the positive examples E+ and the
hypothesis h:

E+ =
§

last([b,o,b],b)
last([a,l,i,c,e],e)

ª

h=
�

last(A,B):- tail(A,C),head(C,B).
	

Because h does not entail any positive example there is no reason for h (nor its speciali-
sations) to appear in a non-recursive hypothesis. We can therefore prune non-recursive
hypotheses which contain specialisations of h, such as:

h1 =
§

last(A,B):-head(A,B).
last(A,B):-tail(A,C),head(C,B).

ª

h2 =
§

last(A,B):-head(A,B).
last(A,B):-tail(A,C),head(C,B),odd(B).

ª

h3 =
§

last(A,B):-head(A,B),even(B).
last(A,B):-tail(A,C),head(C,B),odd(B).

ª
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Elimination constraints are not sound in the same way as the generalisation and spe-
cialisation constraints because they prune solutions (Definition 11) from the hypothesis
space.

Example 11 (Elimination solution unsoundness) Suppose we have the positive examples
E+ and the hypothesis h1:

E+ =
§

last([j,i,m],m)
last([a,l,i,c,e],e)

ª

h1 =
�

last(A,B):- head(A,B).
	

Then an elimination constraint would prune the complete hypothesis h2:

h2 =
§

last(A,B):- head(A,B).
last(A,B):- reverse(A,C),head(C,B).

ª

However, for non-recursive definite programs, elimination constraints are sound with re-
spect to optimal solutions, i.e. they only prune non-optimal solutions from the hypothesis
space. To show this result, we first introduce a lemma:

Lemma 1 Let (B, D, C , E+, E−) be a problem input, D = (Dh, Db) be head and body decla-
rations, H1 ∈HD,C be a totally incomplete hypothesis, H2 ∈HD,C be a complete hypothesis
such that (i) H1 ⊂ H2 and (ii) no predicate of Dh occurs in the body of a clause in H2, and
H3 = H2 \H1. Then H3 is complete.

Proof By assumption, no predicate in Dh occurs in the body of a clause in B, H2, nor H1
(since H1 ⊂ H2), i.e. no clause in a hypothesis depends on another, so we can reason
about entailment using single clauses. Since H1 is totally incomplete, it holds that ∀e ∈
E+,¬∃C ∈ H1, {C} ∪ B |= e. Since H2 is complete, it holds that ∀e ∈ E+,∃C ∈ H2, {C} ∪
B |= e. Therefore, it is clear that ∀e ∈ E+,∃C ∈ H2, C 6∈ H1, {C} ∪ B |= e, which implies
∀e ∈ E+, H2 \H1 ∪ B |= e, and thus H3 is complete.

We use this result to show that elimination constraints are sound with respect to optimal
solutions:

Proposition 5 (Elimination optimal soundness) Let (B, D, C , E+, E−) be a problem in-
put, D = (Dh, Db) be head and body declarations, H1 ∈ HD,C be a totally incomplete hy-
pothesis, H2 ∈ HD,C be a hypothesis such that H1 � H2, and H3 ∈ HD,C be a hypothesis
such that H2 ⊂ H3 and no predicate in Dh is in the body of a clause of H3. Then H3 is not
an optimal solution.

Proof Assume that H3 is an optimal solution. This assumption implies that (1) H3 is
a solution, and (2) there is no hypothesis H4 ∈ HD,C such that H4 is a solution and
size(H4)< size(H3). Let H4 = H3 \H2. Since H1 is totally incomplete and H1 � H2 then,
by Proposition 2, H2 is totally incomplete. By assumption, H3 is complete and since H4 =
H3 \ H2 and H2 is totally incomplete then, by Lemma 1, H4 is complete. Because H3 is
consistent, then, by the monotonicity of definite programs, H4 is consistent (i.e removing
clauses can only make a definite program more specific). Therefore, H4 is complete and
consistent and is a solution. Since H4 = H3 \H2 and H2 ⊂ H3, then size(H4)< size(H3).
Therefore, condition (2) cannot hold, which contradicts the assumption and completes
the proof.
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This proof relies on a hypothesis H being (1) a definite program, and (2) non-recursive
(i.e. no predicate in the body of a clause in H appears in the head of a clause in H).
Condition (1) is clear because the proof relies on the monotonicity of definite programs.
To illustrate condition (2), we give a counter-example to show why we can only use
elimination constraints to prune non-recursive hypotheses.

Example 12 (Non-elimination for recursive hypotheses) Suppose we have the positive ex-
amples E+ and the hypothesis h:

E+ =
§

last([a,l,a,n],n)
last([t,u,r,i,n,g],g)

ª

h=
�

last(A,B):- head(A,B),tail(A,C),empty(C).
	

Then h is totally incomplete so there is no reason for h to appear in a non-recursive hy-
pothesis. However, h can still appear in a recursive hypothesis, where the clauses depend
on each other, such as h2:

h2 =
§

last(A,B):- head(A,B),tail(A,C),empty(C).
last(A,B):- tail(A,C),last(C,B).

ª

3.5.3 Constraints summary

To summarise, combinations of these different outcomes imply different combinations
of constraints, shown in Table 2. In the next section we introduce Popper, which uses
these constraints to learn definite programs.

Outcome Nnone Nsome

Pall n/a Generalisation
Psome Specialisation Specialisation, Generalisation
Pnone Specialisation, Elimination Specialisation, Elimination, Generalisation

Table 2: The constraints we can learn from testing a hypothesis. The Pall and Nnone out-
comes denote that we have found a solution.

4 Popper

Popper is an implementation of our learning from failures idea9. Popper works in three
separate stages: generate, test, and constrain, as described in Section 1. Algorithm 1
sketches the Popper algorithm which combines the three stages. To learn optimal so-
lutions (Definition 14), Popper searches for programs of increasing size. We describe
the generate, test, and constrain stages in detail, how we use ASP’s multi-shot solving
(Gebser et al., 2019) to maintain state between the three stages, and then prove the
soundness and completeness of Popper.

9 Popper is only one implementation of our idea. The flexibility of our three staged approach allows for a variety
of algorithms, which we intend to explore in future work.
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Algorithm 1 Popper

1 def popper(e+, e−, bk, declarations, constraints, max_literals):
2 num_literals = 1
3 while num_literals ≤ max_literals:
4 program = generate(declarations, constraints, num_literals)
5 if program == 'space_exhausted':
6 num_literals += 1
7 continue

8 outcome = test(e+, e−, bk, program)
9 if outcome == ('all_positive', 'none_negative')
10 return program
11 constraints += learn_constraints(program, outcome)
12 return {}

Answer set programming. Popper uses ASP to generate logic programs. We briefly intro-
duce some ASP specific syntax and refer the reader to the excellent book by Gebser et al.
(2012) for more information about ASP. A literal is either an atom a or its default nega-
tion not a. An ASP rule is of the form h:- b1, . . ., bn. where h is an atom, each bi is a
literal, h is the head, and b1, . . ., bn, is the body. A constraint is a rule without a head. A
choice rule is of the form l{h1, . . ., hm}u :- b1, . . ., bn. where l and u are integers
denoting lower and upper bounds. For instance, 2{ a,b,c }3 asserts that at least two
of a,b,c need to be true. A conditional literal is of the form l:l1,. . .,ln and is replaced
by the conjunction of all of l such that condition l1, . . . ,ln is true. A range is shorthand
syntax of the form (start..end) where start and end are integers. For instance, the range
p(1..3) is syntactic sugar for p(1). p(2). p(3). The aggregate #count calculates the num-
ber of elements of a set. For example, the expression #count{X : knows(X,alice)} ==
N counts how many unique values X hold for knows(X,alice) and checks that it is equal
to N.

4.1 Generate

The generate step of Popper takes as input (1) predicate declarations, (2) hypothesis
constraints, and (3) a bound on the total number of literals in a hypothesis and returns an
answer set which represents a definite program, if one exists. There are also implicit input
parameters that bound the number of unique variables, literals, and clauses allowed in
a hypothesis. The idea is to define an ASP problem where an answer set (a model)
corresponds to a definite program. In other words, we define a meta-language in ASP
to represent definite programs. Popper uses ASP constraints to ensure that a definite
program is declaration consistent and obeys hypothesis constraints, such as enforcing
type restrictions or disallowing mutual recursion. By later adding learned hypothesis
constraints, we eliminate answer sets, and thus reduce the hypothesis space. In other
words, the more constraints we learn, the more we reduce the hypothesis space.

Figure 2 shows the base ASP program to generate programs. The key idea is to find
an answer set with suitable head and body literals, which both have the arguments
(Clause,Pred,Arity,Vars) to denote that there is a literal in the clause Clause, with
the predicate symbol Pred, arity Arity, and variables Vars. For instance, head_literal(0,p,2,(0,1))
denotes that clause 0 has a head literal with the predicate symbol p, arity 2, and vari-
ables (0,1), which we interpret as (A,B). Likewise, body_literal(1,q,3,(0,0,2))
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denotes that clause 1 has a body literal with the predicate symbol p, arity 3, and vari-
ables (0,0,2), which we interpret as (A,A,C). Head and body literals are restricted by
head_pred and body_pred declarations respectively. Table 3 shows examples of the cor-
respondence between an answer set and a definite program, which we represent as a
Prolog program.

% possible clauses
allowed_clause(0..N-1):- max_clauses(N).

% variables
var(0..N-1):- max_vars(N).

% clauses with a head literal
clause(Clause):- head_literal(Clause,_,_,_).

%% head literals
0 {head_literal(Clause,P,A,Vars): head_pred(P,A), vars(A,Vars)} 1:-

allowed_clause(Clause).

%% body literals
1 {body_literal(Clause,P,A,Vars): body_pred(P,A), vars(A,Vars)} N:-

clause(Clause), max_body(N).

% variable combinations
vars(1,(Var1,)):- var(Var1).
vars(2,(Var1,Var2)):- var(Var1),var(Var2).
vars(3,(Var1,Var2,Var3)):- var(Var1),var(Var2),var(Var3).

Fig. 2: Popper base ASP program. The head_literal literals are bounded from 0 to 1, i.e
for each possible clause there can be at most 1 head literal. The body_literal literals
are bounded from 1 to N , where N is the maximum number of literals allowed in a
clause, i.e. for each clause with a head literal, there has to be at least 1 but at most N
body literals.

4.1.1 Validity, redundancy, and efficiency constraints

Popper uses hypothesis constraints (in the form of ASP constraints) to eliminate an-
swer sets, i.e. to prune the hypothesis space. Popper uses constraints to prune invalid
programs. For instance, Figure 3 shows constraints specifically for recursive programs,
such as preventing recursion without a base case. Popper also uses constraints to re-
duce redundancy. For instance, Popper prunes subsumption redundant programs, such
as pruning the following program because the first clause subsumes the second:

h=
§

p(A):- q(A).
p(A):- q(A),r(A).

ª

Finally, Popper uses constraints to improve efficiency (mostly by removing redundancy).
For instance, Popper uses constraints to use variables in order, which prunes the program
p(B):- q(B) because we could generate p(A):- q(A).
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Answer set Prolog program

{head_literal(0,f,2,(0,1)),body_literal(0,empty,(1,))} f(A,B):-empty(B).

{head_literal(0,f,2,(0,1)),body_literal(0,head,2,(1,0))} f(A,B):-head(B,A).

{head_literal(0,f,2,(0,1)),body_literal(0,tail,2,(0,1)),
body_literal(0,tail,2,(0,2))} f(A,B):-tail(A,B),tail(A,C).

{head_literal(0,connected,2,(0,1)),body_literal(0,edge,2,(0,1)),
head_literal(1,connected,2,(0,1)),body_literal(1,edge,2,(0,2)),
body_literal(1,connected,(2,1))}

connected(A,B):-edge(A,B).
connected(A,B):-edge(A,C),connected(C,B).

{head_literal(0,last,2,(0,1)),body_literal(0,tail,2,(0,2)),
body_literal(0,empty,1,(2,)),body_literal(0,head,2,(0,1)),
head_literal(1,last,2,(0,1)),body_literal(1,tail,2,(0,2)),
body_literal(1,last,2,(2,1))}

last(A,B):-tail(A,C),empty(C),head(A,B).
last(A,B):-tail(A,C),last(C,B).

Table 3: The correspondence between an answer set and a definite program represented
as a Prolog program.

recursive:- recursive(Clause).

recursive(Clause):- head_literal(Clause,P,A,_), body_literal(Clause,P,A,_).

has_base:- clause(Clause), not recursive(Clause).

% need multiple clauses for recursion
:- recursive(_), not clause(1).

% prevent recursion without a basecase
:- recursive, not has_base.

Fig. 3: Constraints used by Popper to prune invalid recursive programs.

4.1.2 Language bias constraints

A key feature of Popper is that it supports optional10 hypothesis constraints to prune the
hypothesis space. Figure 4 shows example language bias constraints, such as to prevent
singleton variables and to enforce Datalog restrictions (where head variables must ap-
pear in the body). Declarative constraints have many benefits, notably the ease to define
them. For instance, to add simple types to Popper requires the single constraint shown in
Figure 4. Through constraints, Popper also supports the standard notions of recall and in-
put/output11 arguments of mode declarations (Muggleton, 1995). Popper also supports
functional and irreflexive constraints, and constraints on recursive programs, such as dis-
allowing left recursion or mutual recursion. Finally, as we show in Appendix A, Popper
can also use constraints to impose metarules, clause templates used by many ILP systems
(Cropper and Tourret, 2019), which ensures that each clause in a program is an instance
of a metarule.

10 In contrast to most ILP systems, the only bias that Popper needs is predicate declarations. Other biases, such as
types or recall, are all optional.

11 An input argument specifies that, at the time of calling a predicate, the corresponding argument must be
instantiated, which is useful when inducing Prolog programs where literal order matters.
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head_var(Clause,Var):- head_literal(Clause,_,_,Vars), var_member(Var,Vars).

body_var(Clause,Var):- body_literal(Clause,_,_,Vars), var_member(Var,Vars).

% prevent singleton variables
:- clause_var(Clause,Var), #count{P,Vars: var_in_literal(Clause,P,Vars,Var)} == 1.

% head vars must appear in the body
:- head_var(Clause,Var), not body_var(Clause,Var).

%% type matching
:- var_in_literal(Clause,P,Vars1,Var),var_in_literal(Clause,Q,Vars2,Var),

var_pos(Var,Vars1,Pos1),var_pos(Var,Vars2,Pos2),
type(P,Pos1,Type1),type(Q,Pos2,Type2),
Type1 != Type2.

Fig. 4: Optional language bias constraints used by Popper.

4.1.3 Hypothesis constraints

As with many ILP systems (Muggleton, 1995; Srinivasan, 2001; Law et al., 2014), Pop-
per supports clause constraints, which allow a user to prune specific clauses from the
hypothesis space. Popper additionally supports the more general concept of hypothesis
constraints (Definition 6), which are defined over a whole program (a set of clauses)
rather than a single clause. For instance, hypothesis constraints allow us to prune recur-
sive programs that do not contain a base case clause (Figure 3), to prune left recursive
or mutually recursive programs, or to prune programs which contain subsumption re-
dundancy between clauses.

As a toy example, suppose you want two disallow two predicate symbols p/2 and q/2
from both appearing in a program. Then this hypothesis constraint is trivial to express
with Popper:

:- body_literal(_,p,2,_), body_literal(_,q,2,_).

As we show in Appendix A, Popper can simulate metarules through hypothesis con-
straints. We are unaware of any other ILP system that supports hypothesis constraints,
at least with the same ease and flexibility as Popper.

4.2 Test

In the test stage, Popper converts an answer set to a definite program and tests it against
the training examples. As Table 3 shows, this conversion is straightforward, except if
input/output argument directions are given, in which case Popper orders the body liter-
als of a clause. To evaluate a hypothesis, we use a Prolog interpreter. For each example,
Popper checks whether the example is entailed by the hypothesis and background knowl-
edge. We enforce a timeout to halt non-terminating programs. In addition to evaluating
a whole hypothesis, Popper also individually evaluates each non-recursive clause in a
hypothesis. This extra check allows us to identify additional elimination constraints. If
a hypothesis fails, then Popper identifies what type of failure has occurred and what
constraints to generate (using the failures and constraints from Section 3.5).
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4.3 Constrain

If a hypothesis fails, then, in the constrain stage, Popper generates ASP constraints
to prune the hypothesis space, and thus constrain subsequent hypothesis generation.
Specifically, we describe how we transform a failed hypothesis (a definite program) to a
hypothesis constraint (an ASP constraint written in the encoding from Section 4.1). We
describe the generalisation, specialisation, and elimination constraints that Popper uses,
based on the definitions in Section 3.5. As a version of Popper without these constraints
is considered in the experiments, we also describe the banish constraint, which prunes
one specific hypothesis. To distinguish between Prolog and ASP code, we represent the
code of definite programs in typewriter font and ASP code in bold typewriter font.

4.3.1 Encoding atoms

Consider encoding the atom f(A,B). An atom is either in the head or body of a clause. In
our encoding, the atom is either represented as head_literal(Clause,f,2,(V0,V1))
or as body_literal(Clause,f,2,(V0,V1)). The relevant clause is indicated by Clause
and the 2 indicates the predicate’s arity. Two functions below encode atoms into ASP
literals. The function encodeHead encodes a head atom and encodeBody encodes a body
atom. The first argument specifies the clause an atom belongs to. The second argument
is the atom. A hypothesis variable is converted to a variable in our ASP encoding by the
encodeVar function12.

encodeHead(Clause,Pred(Var0, . . . ,Vark)) :=
head_literal(Clause,Pred,k+1,(encodeVar(Var0), . . .,encodeVar(Vark)))

encodeBody(Clause,Pred(Var0, . . . ,Vark)) :=
body_literal(Clause,Pred,k+1,(encodeVar(Var0), . . .,encodeVar(Vark)))

For instance calling encodeHead(Clause,f(A,B)) generates the ASP literal head_literal(Clause,f,2,(V0,V1))
and calling encodeBody(Clause,f(A,B)) generates the ASP literal body_literal(Clause,f,2,(V0,V1)).

4.3.2 Encoding clauses

Using the encoding of atoms to ASP literals, we can encode clauses. Consider a clause
last(A,B):- reverse(A,C),head(C,B). Supposing Ci identifies the clause, the follow-
ing ASP literals capture where the atoms occur:

head_literal(Ci,last,2,(V0,V1)),
body_literal(Ci,reverse,2,(V0,V2)),body_literal(Ci,head,2,(V2,V1))

Note that ASP variables V0, V1, V2 will be instantiated by indices representing vari-
ables of hypotheses, e.g. 0 for A, 1 for B, etc. Note that the above encoding allows for
V0 = V1 = V2 = 0, which represents the clause with all variables as A. To ensure that
these variables remain distinct we need to impose V0!=V1 and V0!=V2 and V1!=V2. The

12 While not reflected in the examples, encodeVar and vars automatically ensure that variables from distinct clauses
get distinct names.
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function encodeClause implements both the straightforward translation and the variable
distinctness assertion:

encodeClause(Clause, (head:-body1, . . . ,bodym)) :=
encodeHead(Clause,head),encodeBody(Clause,body1), . . .,
encodeBody(Clause,bodym),
assertDistinct(vars(head)∪ vars(body1)∪ . . .∪ vars(bodym))

An encoding by encodeClause only asserts what occurs in the clause. It does not state that
other literals do not occur in the clause. For example, the above ASP literals would also
be true of the clause last(A,B):- reverse(A,C),head(C,B),tail(C,A).

In our encoding, the ASP literal clause_size(Ci,m) is only true when clause Ci has
exactly m body literals. The function encodeSizedClause uses this literal to assert that,
beyond the m body literals already asserted, there can be no other body literals:

encodeSizedClause(Clause, (head:-body1, . . . ,bodym)) :=
encodeClause(Clause, (head:-body1, . . . ,bodym)),clause_size(Clause,m)

For instance, encodeSizedClause(Ci, (last(A,B):- reverse(A,C),head(C,B))) imposes
that clause Ci must correspond exactly to the given clause:

head_literal(Ci,last,2,(V0,V1)),
body_literal(Ci,reverse,2,(V0,V2)),body_literal(Ci,head,2,(V2,V1))
V0!=V1,V0!=V2,V1!=V2,clause_size(Ci,2)

With the clause encoding functions defined, we can now use them to define our con-
straints.

4.3.3 Generalisation constraints

Given a hypothesis H, by Definition 17, any hypothesis that includes all of H ’s clauses
exactly, i.e. not specialised, is a generalisation of H. We use this fact to define function
generalisationConstraint, which converts a set of clauses into an ASP encoded general-
isation constraint (Definition 19). We use encodeSizedClause to impose that a clause is
not specialised. Each clause gets its own ASP variable Ci, meaning the clauses can occur
in any order.

generalisationConstraint({Clause0, . . . ,Clausen−1}) :=
:- encodeSizedClause(C0,Clause0), . . .,encodeSizedClause(Cn-1,Clausen−1).

Figure 5 illustrates a generalisation constraint derived by generalisationConstraint.

h=
�

last(A,B):- head(A,B).
	

:-
head_literal(C0,last,2,(C0V0,C0V1)),
body_literal(C0,head,2,(C0V0,C0V1)),
C0V0 != C0V1,clause_size(C0,1).

Fig. 5: The ASP encoded generalisation constraint for the hypothesis h.
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4.3.4 Specialisation constraints

Given a hypothesis H, by Definition 18, any hypothesis which has every clause of H
occur, where each clause may be specialised, and includes no other clauses, is a speciali-
sation of H. The function specialisationConstraint uses this fact to derive an ASP encoded
specialisation constraint (Definition 20). We use that encodeClause allows additional lit-
erals to be added to a provided clause. The literal not clause(n) ensures no additional
clause is added to the n distinct clauses of the provided hypothesis.

specialisationConstraint({Clause0, . . . ,Clausen−1}) :=
:- encodeClause(Cl0,Clause0), . . .,encodeClause(Cln-1,Clausen−1),

assertDistinct({Cl0, . . . ,Cln-1}),not clause(n).

We illustrate why asserting that specialised clauses are distinct is necessary. Consider the
hypotheses h1 and h2:

h1 =
§

last(A,B):- head(A,B).
last(A,B):- sumlist(A,B).

ª

h2 =
§

last(A,B):- head(A,B),sumlist(A,B).
last(A,B):- member(A,B).

ª

The first clause of h2 specialises both clauses in h1, yet h2 is not a specialisation of h1.
According to Definition 18, each clause needs to be subsumed by a provided clause. Note
that specialisationConstraint only considers hypotheses with at most n clauses. It is not
possible for one of these clauses to be non-specialising, as each of the original n clauses
is required to be specialised by a distinct clause.

Figure 6 illustrates a specialisation constraint derived by specialisationConstraint.

h=
§

rev(A,B):- head(A,B).
rev(A,B):- tail(A,C),head(C,B).

ª

:-
head_literal(C0,rev,2,(C0V0,C0V1)),
body_literal(C0,head,2,(C0V0,C0V1)),
head_literal(C1,rev,2,(C1V0,C1V1)),
body_literal(C1,tail,2,(C1V0,C1V2)),
body_literal(C1,head,2,(C1V2,C1V1)),
C0V0 != C0V1,C1V0 != C1V1,
C1V0 != C1V2,C1V1 != C1V2,
C0 != C1,not clause(2).

Fig. 6: The ASP specialisation constraint for the hypothesis h.

4.3.5 Elimination constraints

By Proposition 5, given a totally incomplete hypothesis H, any non-recursive hypothesis
which includes all of H ’s clauses, where each clause may be specialised, cannot be an
optimal solution. The function eliminationConstraint uses this fact to derive an ASP en-
coded elimination constraint (Definition 21). As in specialisationConstraint, encodeClause
is used to allow additional literals in clauses, ensuring that provided clauses are included
or specialised. However, eliminationConstraint does not require that every clause is a
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specialisation of a provided clause. Instead, all that is required is that the hypothesis is
non-recursive.

eliminationConstraint({Clause0, . . . ,Clausen−1}) :=
:- encodeClause(Cl0,Clause0), . . .,encodeClause(Cln-1,Clausen−1),

not recursive.

Figure 7 illustrates an elimination constraint derived by eliminationConstraint.

h=
�

last(A,B):- tail(A,C),head(C,B).
	

:-
head_literal(C0,last,2,(C0V0,C0V1)),
body_literal(C0,tail,2,(C0V0,C0V2)),
body_literal(C0,head,2,(C0V2,C1V1)),
C0V0 != C0V1,C0V0 != C0V2,C0V1 != C0V2,
not recursive.

Fig. 7: The ASP elimination constraint for the hypothesis h.

4.3.6 Banish constraints

In the experiments section, we compare Popper against itself without constraint pruning.
To do so we need to remove single hypotheses from the hypothesis space. We introduce
the banish constraint for this purpose. To prune a specific hypothesis, hypotheses with
different variables should not be pruned. We accomplish this condition by changing the
behaviour of the encodeVar function. Normally encodeVar returns ASP variables which are
then grounded to indices that correspond to the variables of hypotheses. Instead, by the
following definition, encodeVar directly assigns the corresponding index for a hypothesis
variable:

encodeVar= {A 7→ 0; B 7→ 1; C 7→ 2; . . . }

For a banish constraint no additional literals in clauses are allowed, nor are additional
clauses. The below function banishConstraint ensures both conditions when converting
a hypothesis to an ASP encoded banish constraint. That provided clauses occur non-
specialised is ensured by encodeSizedClause. The literal not clause(n) asserts that there
are no more clauses than the original number.

banishConstraint({Clause0, . . . ,Clausen−1}) :=
:- encodeSizedClause(C0,Clause0), . . .,encodeSizedClause(Cn-1,Clausen−1),

not clause(n).

Figure 8 illustrates a banish constraint derived by banishConstraint.

4.4 Popper loop and multi-shot solving

A naive implementation of Algorithm 1, such as performing iterative deepening on the
program size, would duplicate grounding and solving during the generate step. To im-
prove efficiency, we use Clingo’s multi-shot solving (Gebser et al., 2019) to maintain
state between the three steps. The idea of multi-shot solving is that state about the search
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h=
§

f(A):- head(A,B),one(B).
f(A):- tail(A,B),tail(B,C),empty(C).

ª

:-
head_literal(C0,f,1,(0,)),
body_literal(C0,head,2,(0,1)),
body_literal(C0,one,1,(1,)),
head_literal(C1,f,1,(0,)),
body_literal(C1,tail,2,(0,1)),
body_literal(C1,tail,2,(1,2)),
body_literal(C1,empty,1,(2,)),
clause_size(C0,2),clause_size(C1,3),
not clause(2).

Fig. 8: The ASP banish constraint for the hypothesis h.

space for an ASP program can be saved to help the search for any modifications of that
program. The essence of the multi-shot cycle is that a ground program is given to a ASP
solver, yielding an answer set, which leads to a (first-order) extension of the program.
Only this extension then needs grounding and adding to the running ASP instance, which
means that the running solver may, for example, maintain learned conflicts.

Popper uses multi-shot solving as follows. The initial ASP program is the encoding
described in Section 4.1. Popper starts a Clingo instance and asks it to solve this pro-
gram, which grounds it and then calls the ASP solver, which returns an answer set (if the
problem is satisfiable). Popper converts the answer set to a definite program and tests it
against the examples. If a hypothesis fails, Popper generates ASP constraints using the
functions in Section 4.3 and adds them to the running Clingo instance, which grounds
the constraints and adds the new (propositional) rules to the running solver. The solver
knows which parts of the search space (i.e. hypothesis space) have already been consid-
ered and will not revisit them. This loop repeats until either (1) Popper finds an optimal
solution, or (2) there are no more hypotheses to test.

4.5 Correctness

We now show the correctness of Popper. We first show that Popper’s base encoding (Fig-
ure 2) can generate every declaration consistent hypothesis (Definition 4):

Proposition 6 The base encoding of Popper has a model for every declaration consistent
hypothesis.

Proof Let D = (Dh, Db) be a declaration bias, Nvar be the maximum number of unique
variables, Nbod y be the maximum number of body literals, Nclause be the maximum num-
ber of clauses, H be any hypothesis declaration consistent with D and these parameters,
and C be any clause in H. Our encoding represents the head literal ph(H1, . . . , Hn) of
C as a choice literal head_literal(i,ph,n,(H1,. . .,Hn)) guarded by the condition
head_pred(ph,n) ∈ Dh, which clearly holds. Our encoding represents a body literal
pb(B1, . . . , Bm) of C as a choice literal body_literal(i,pb,m,(B1,. . .,Bm)) guarded
by the condition body_pred(pb,m) ∈ Db, which clearly holds. The base encoding only
constrains the above guesses by three conditions: (i) at most Nvar unique variables per
clause, (ii) at least 1 and at most Nbod y body literals per clause, and (iii) at most Nclause
clauses. As both the hypothesis and the guessed literals satisfy the same conditions, we
conclude there exists a model representing H.
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We show that any hypothesis returned by Popper is a solution (Definition 11):

Proposition 7 (Soundness) Any hypothesis returned by Popper is a solution.

Proof Any returned hypothesis has been tested against the training examples and con-
firmed as a solution.

To make the next two results shorter, we introduce a lemma to show that Popper never
prunes optimal solutions (Definition 14):

Lemma 2 Popper never prunes optimal solutions.

Proof Popper only learns constraints from a failed hypothesis, i.e. a hypothesis that is
incomplete or inconsistent. Let H be a failed hypothesis. If H is incomplete, then, as
described in Section 4.3, Popper prunes specialisations of H. Proposition 4 shows that
a specialisation constraint never prunes complete hypotheses, and thus never prunes
optimal solutions. If H is inconsistent, then, as described in Section 4.3, Popper prunes
generalisations of H. Proposition 3 shows that a generalisation constraint never prunes
consistent hypotheses, and thus never prunes optimal solutions. Finally, if H is totally
incomplete, then, as described in Section 4.3, Popper uses an elimination constraint to
prune all non-recursive hypotheses that contain H. Proposition 5 shows that an elim-
ination constraint never prunes optimal solutions. Since Popper only uses these three
constraints, it never prunes optimal solutions.

We show that Popper returns a solution if one exists:

Proposition 8 (Completeness) Popper returns a solution if one exists.

Proof Assume, for contradiction, that Popper does not return a solution, which implies
that (1) Popper returned a hypothesis that is not a solution, or (2) Popper did not return
a solution. Case (1) cannot hold because Proposition 7 shows that every hypothesis re-
turned by Popper is a solution. For case (2), by Proposition 6, Popper can generate every
hypothesis so it must be the case that (i) Popper did not terminate, (ii) a solution did not
pass the test stage, or (iii) that every solution was incorrectly pruned. Case (i) cannot
hold because Proposition 1 shows that the hypothesis space is finite so there are finitely
many hypotheses to generate and test. Case (ii) cannot hold because a solution is by
definition a hypothesis that passes the test stage. Case (iii) cannot hold because Lemma
2 shows that Popper never prunes optimal solutions. These cases are exhaustive, so the
assumption cannot hold, and thus Popper returns a solution if one exists.

We show that Popper returns an optimal solution if one exists:

Theorem 1 (Optimality) Popper returns an optimal solution if one exists.

Proof By Proposition 8, Popper returns a solution if one exists. Let H be the solution
returned by Popper. Assume, for contradiction, that H is not an optimal solution. By
Definition 14, this assumption implies that either (1) H is not a solution, or (2) H is a
non-optimal solution. Case (1) cannot hold because H is a solution. Therefore, case (2)
must hold, i.e. there must be at least one smaller solution than H. Let H ′ be an optimal
solution, for which we know size(H ′) < size(H). By Proposition 6, Popper generates
every hypothesis, and Popper generates hypotheses of increasing size (Algorithm 1),
therefore the smaller solution H ′ must have been considered before H, which implies that
H ′ must have been pruned by a constraint. However, Lemma 2 shows that H ′ could not
have been pruned and so cannot exist, which contradicts the assumption and completes
the proof.
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5 Experiments

We now evaluate our learning from failures idea. A key idea of our approach is to learn
constraints from failed hypotheses to prune the hypothesis space to improve learning
performance. We therefore claim that, compared to unconstrained learning, constraints
can improve learning performance. One may think that this improvement is obvious,
i.e. constraints will definitely improve performance. However, it is unclear in practice
whether, and if so by how much, constraints will improve learning performance because
Popper needs to (1) analyse failed hypotheses, (2) generate constraints from them, and
(3) pass the constraints to the ASP system, which then needs to ground and solve them,
which may all have non-trivial computational overheads. Our experiments therefore aim
to answer the question:

Q1 Can constraints improve learning performance compared to unconstrained learning?

To answer this question, we compare Popper with and without the constrain stage. In
other words, we compare Popper against a brute-force generate and test approach. To do
so, we use a version of Popper with only banish constraints enabled to prevent repeated
generation of a failed hypothesis. We call this system Enumerate.

As mentioned in Section 2, a major limitation of existing pure ASP-based ILP ap-
proaches is that they struggle to handle large domains and cannot support infinite do-
mains (Corapi et al., 2011; Athakravi et al., 2013; Law et al., 2014; Kaminski et al.,
2018; Evans et al., 2019). To address this limitation, our approach decomposes the ILP
problem into separate hypothesis generation and testing stages. In our implementation,
Popper uses ASP to generate programs and then uses Prolog to test programs against
the examples. We therefore claim that Popper can outperform pure ASP-based ILP sys-
tems on large domains (we do not consider infinite domains because pure ASP-based
ILP systems need a finite grounding). In addition, because we learn constraints to avoid
repeated search, we claim that Popper can outperform existing pure Prolog-based ILP
systems. Our experiments therefore aim to answer the question:

Q2 Can Popper outperform state-of-the-art ILP systems?

To answer this question, we compare Popper against Metagol (version 2.3.0) (Cropper
and Muggleton, 2016), ILASP2 (Law et al., 2016), ILASP3 (Law, 2018), and FastLAS
(Law et al., 2020).

Proposition 1 shows that the size of the learning from failures hypothesis space is a
function of many parameters, including the number of predicate declarations, the num-
ber of unique variables in a clause, and the number of clauses in a hypothesis. To explore
this result, our experiments aim to answer the question:

Q3 How well does Popper scale?

To answer this question, we evaluate Popper on several problems where we vary (1) the
size of the target program, (2) the number of predicate declarations, (3) the number of
constants in the problem, (4) the number of unique variables in a clause, (5) the max-
imum number of literals in a clause, and (6) the maximum number of clauses allowed
in a hypothesis.
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5.1 Primorials

The purpose of this first experiment is to evaluate how well Popper scales with respect
to the optimal solution size (i.e. the total number of literals in the optimal solution). We
therefore need a problem where we can control the optimal solution size. We consider
a number theory problem. Let pk denote the kth prime number. Then the primorial pn#
is defined as the product of the first n primes:

pn#≡
n
∏

k=1

pk

For instance, p5# is the product of the first 5 primes:

p5#= 2× 3× 5× 7× 11= 2310

The goal of this experiment is to classify primorial numbers. We vary the solution size
by varying the primorial number pn#. The primorial pn# requires n body literals. For
instance, for p2#, the solution is:

primorial2(A):- div2(A),div3(A).

For p5#, the solution is:

primorial5(A):- div2(A),div3(A),div5(A),div7(A),div11(A).

5.1.1 Materials

To evaluate how well Popper scales given more predicate declarations, we compare two
sets of BK (small and big). In the first set (small), we provide as BK a monadic predicate
divisiblei for each prime number i in {1, 2, . . . , 100}, which holds when a number is evenly
divisible by i. In the second set (big), we augment the small dataset with dummy monadic
predicates which always evaluate to false. For simplicity, we use the predicate dummyi
for each non-prime number i in {1, 2, . . . , 100}. Note that this problem representation is
not necessarily the most compact. Indeed, we purposely designed the representation so
we can vary the optimal solution size to evaluate how well the systems scale. To be clear,
the only variable in the experiment (besides the ILP system) is the optimal solution size,
which we progressively increase to evaluate how well the systems scale.

We compare Popper, Enumerate, Metagol, ILASP, and FastLAS. To compare the sys-
tems, we try to use settings so that each system considers approximately the same hy-
pothesis space.

Popper and Enumerate settings We set Popper and Enumerate to us at most 1 unique
variable, at most 10 body literals, and at most 1 clause.

Metagol settings Metagol needs metarules (Section 2.5) to guide the proof search. We
provide Metagol with the following two metarules:

P(A):- Q(A).
P(A):- Q(A),R(A).

These metarules match the Popper settings in that only one variable is used.
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ILASP2 and ILASP3 settings We run both ILASP2 and ILASP3 with the same settings13,
so we simply refer to both as ILASP. We run ILASP with the ‘-no-constraints’ and ‘–no-
aggregates’ flags. We additionally ran ILASP3 with the ‘disable implication’ and ‘disable
propagation’ flags. We tell ILASP that each BK relation is positive, which prevents it from
generating body literals using negation. We set ILASP to use at most 1 unique variable
and at most 2 body literals (‘-ml=2’ and ‘–max-rule-length=3’). When we tried to use
at most 3 and 4 body literals it took ILASP 42 seconds (3 body literals) and 41 minutes
(4 body literals) to generate the hypothesis space, i.e. to generate the SAT problem.
This bound implies that the largest primorial number learnable by ILASP is p2#. ILASP
does not support infinite domains so requires a bound on the number of integers. We
found that it took Clingo 2 seconds, 48 seconds, and 8 minutes to ground the BK for
the bounds for p7#, p8#, and p9# respectively. We therefore set the maximum integer
bound to p7#+1. This bound implies that largest primorial number learnable by ILASP
is p7# (ignoring the maximum literal bound).

FastLAS settings We set FastLAS to run identically to ILASP, except we do not enforce a
maximum body literal size because FastLAS does not need such a bound. Note that when
we set the maximum integer bound to p8#+1, FastLAS could not find any solutions in
the allocated time.

5.1.2 Methods

For each n in {1, 2, . . . , 10}, we generate the single positive example corresponding to
pn#. We uniformly sample 20 negative examples from the set {2, . . . , pn}. We measure
learning time as the time to learn a solution. We enforce a timeout of 2 minutes per task.
We repeat each experiment 10 times and plot the standard error.

5.1.3 Results

Figure 9 shows the results. Popper clearly outperforms Enumerate (the unconstrained
approach) on both datasets. On the small dataset, Enumerate can only learn a program
for the second primorial number, i.e. a program with two body literals. On the big dataset
Enumerate can only learn a program for the first primorial number, i.e. a program with
one body literal. By contrast, on both datasets, Popper can learn a program for the 10th
primorial number, i.e. a program with 10 body literals. This result strongly suggests that
the answer to Q1 is yes, constraints can drastically improve learning performance.

Why does Popper perform much better than Enumerate? Enumerate tests every hy-
pothesis, i.e. every combination of literals. By contrast, Popper learns constraints from
failed hypotheses to prune the hypothesis space, i.e. to remove certain combinations of
literals. For instance, consider learning a program for p3#= 2×3×5= 30. Below shows
a tiny subset (H ) of the hypothesis space for this problem (the full hypothesis for the
big BK problem contains approximately 1013 hypotheses). When Popper tests h1, it fails
because it is too specific, i.e. div53(30) fails. Popper therefore generates a constraint to
remove specialisations of h1 (h1 - h8) from the hypothesis space. From testing this single

13 We consulted the ILASP authors for suggestions on which settings to run ILASP2 and ILASP3 with.
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Fig. 9: Primorials experimental results when varying the primorial number, which corre-
sponds to the size of the optimal solution. Note that FastLAS cannot solve any problems
for p8#, p9#, and p10# because of a maximum integer bound.

hypothesis, Popper drastically reduces the size of the hypothesis space.
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h1 = primorial3(A):- div53(A).
h2 = primorial3(A):- div53(A),div2(A).
h3 = primorial3(A):- div53(A),div3(A).
h4 = primorial3(A):- div53(A),div5(A).
h5 = primorial3(A):- div53(A),div2(A),div3(A).
h6 = primorial3(A):- div53(A),div2(A),div5(A).
h7 = primorial3(A):- div53(A),div3(A),div5(A).
h8 = primorial3(A):- div53(A),div2(A),div3(A),div5(A)
h9 = primorial3(A):- div2(A),div3(A),div5(A)















































Popper outperforms Metagol. The highest primorial number for which Metagol can
learn a solution is p6#, which takes 35 seconds to learn. By contrast it takes Popper 2
seconds to learn the solution for p6#. We think the performance difference is because
of Metagol’s inefficient search. Metagol performs iterative deepening over the number
of clauses allowed in a solution (Muggleton et al., 2015). However, if a clause or literal
fails during the search, Metagol does not remember this failure, and will retry already
failed clauses and literals at each depth (and even multiple times as the same depth). By
contrast, if a clause fails, Popper learns constraints from the failure so it never tries that
clause (or its specialisations) again.

Popper outperforms ILASP2, ILASP3, and FastLAS. ILASP2 and ILASP3 cannot solve
any problem, even for p1#, because they both pre-compute the hypothesis space. FastLAS
performs much better than both. For p7# it takes FastLAS 8 seconds to learn a solution.
By contrast it takes Popper 2 seconds. FastLAS cannot learn solutions for p8#, p9#, or
p10# because of the maximum integer bound. Note that when given a larger bound,
FastLAS could not learn a solution for any primorial number.
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Overall, the results from this experiment suggest that the answers to questions Q1
and Q2 are both yes, and that the answer to Q3 is that Popper scales better than state-
of-the-art ILP systems with respect to the optimal solution size.

5.2 Robots

The purpose of this second experiment is to evaluate how well Popper scales with respect
to the domain size (i.e. the constant signature). We therefore need a problem where we
can control the domain size. We consider a robot strategy learning problem (Cropper
and Muggleton, 2015). There is a robot in a n× n grid world. Given an arbitrary start
position, the goal is to learn a general strategy to move the robot to the topmost row in
the grid. For instance, for a 10×10 world and the start position (2,2), the goal is to move
to position (2, 10). The domain contains all possible robot positions. We therefore vary
the domain size by varying n, the size of the world. The optimal solution is a recursive
strategy for keep moving upwards until you cannot move upwards any more. To reiterate,
we purposely fix the optimal solution so that the only variable in the experiment is the
domain size (i.e. the grid world size), which we progressively increase to evaluate how
well the systems scale.

5.2.1 Materials

An example is an atom of the form f (s1, s2), where s1 and s2 represent start and end
states. A state is a pair of discrete coordinates (x , y) denoting the column (x) and row
(y) position of the robot. We provide four dyadic relations as BK: move_right, move_left,
move_up, and move_down, which change the state, e.g. move_right((2,2),(3,2)). Again,
note that this problem representation is not necessarily the most compact and may not
be the best representation for certain systems.

We compare Popper, Enumerate, Metagol, ILASP2, and ILASP3. We do not use Fast-
LAS because it does not support recursion. To fairly compare the systems, we again try
to use settings so that each system considers approximately the same hypothesis space.

Popper settings We allow Popper and Enumerate to use at most 3 unique variables, at
most 2 body literals, and at most 2 clauses. Because Popper and Enumerate can generate
non-terminating Prolog programs, we set both systems to use a testing timeout of 0.1
seconds per example.

Metagol settings We provide Metagol with the metarules in Figure 10. These metarules
constitute an almost14 complete set of metarules for a singleton-free fragment of monadic
and dyadic Datalog (Cropper and Tourret, 2019).

ILASP2 and ILASP3 settings We again run both ILASP2 and ILASP3 with the same set-
tings15, so we simply refer to both as ILASP. We run ILASP as with the ‘–no-constraints’
and ‘–no-aggregates’ flags. We tell ILASP that each predicate is positive, which prevents
ILASP from generating body literals using negation. We set ILASP to use at most 3 unique

14 Cropper and Tourret 2019 show that it is impossible to generate a finite and complete set of metarules for a
singleton-free fragment of monadic and dyadic Datalog.

15 We consulted the ILASP authors for suggestions on which settings to run ILASP2 and ILASP3 with.
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variables and at most 2 body literals (‘-ml=2’ and ‘–max-rule-length=3’). As in the pri-
morial experiment, when we increased these parameters, ILASP struggled to find any
solutions in the given time.

P(A):-Q(A).
P(A):-Q(A),R(A).
P(A):-Q(A,B),R(B).
P(A):-Q(A,B),P(B).
P(A):-Q(A,B),R(A,B).

P(A,B):-Q(B,A).
P(A,B):-Q(A,B),R(A,B).
P(A,B):-Q(A),R(A,B).
P(A,B):-Q(A,B),R(B).
P(A,B):-Q(A,C),R(C,B).
P(A,B):-Q(A,C),P(C,B).

Fig. 10: The metarules used by Metagol in the robot and list transformation experiments.

5.2.2 Methods

We run the experiment with an n × n grid world for each n in {4,6, 8, . . . , 28, 30}. To
generate examples, for start states, we uniformly sample positions that are not at the top
of the world. For the positive examples, the end state is the topmost position, e.g. (x , n)
where n is the grid size. For negative examples, the end state is the topmost position
but has the wrong horizontal coordinate, e.g. (4, n) when starting at (2,3). We sample
with replacement 5 positive and 5 negative training examples, and 1000 positive and
1000 negative testing examples. The default predictive accuracy is therefore 50%. We
measure predictive accuracies and learning times. We enforce a timeout of 2 minutes
per task. We repeat each experiment 10 times and plot the standard error.

5.2.3 Results

Figure 11 shows the results. Enumerate achieves the best predictive accuracy out of all
the systems. For small hypothesis spaces, this result is unsurprising because Enumerate
tests every hypothesis. However, the predictive accuracy difference between Enumerate
and Popper is negligible. Popper is 5 times quicker than Enumerate.

The learning times of Popper and Enumerate remain almost constant as the grid size
grows. The reason is that the domain size has no influence on the size of the learning
from failures hypothesis space (Proposition 1). The only influence the grid size has on the
learning time of Popper and Enumerate is any overhead in executing the induced Prolog
program on larger grids. This result suggests that Popper can scale well with respect to
the domain size.

Metagol slightly outperforms Popper in terms of learning times for grid worlds less
than 14, but has worse predictive accuracy. However, as the grid size grows, Metagol’s
performance quickly degrades. Metagol’s predictive accuracy drops because of learning
timeouts, i.e. if Metagol fails to learn a solution then it only achieves default predictive
accuracy (50%). For a grid size of 30, Metagol almost always times out before finding a
solution. The reason is that Metagol searches for a hypothesis by inducing and execut-
ing partial programs over the examples. In other words, Metagol uses the examples to
guide the hypothesis search. As the grid size grows, there are more partial programs to
construct, so its performance suffers.
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Fig. 11: Robots experimental results when varying the world size, which corresponds to
the domain size.

Popper outperforms ILASP2 both in terms of predictive accuracies and learning times.
ILASP2 struggles because it ground the rules in the hypothesis space with respect to the
examples and BK, which is infeasible on non-trivial grid sizes, and is why its performance
suffers as the domain size grows. ILASP2 outperforms ILASP3 because once ILASP2 finds
a solution it terminates. By contrast, ILASP3 finds one hypothesis schema that guarantees
coverage of the example (which, in this special case, also implies finding a solution),
then carries on to find alternative hypothesis schemas. The extra work done by ILASP3
is needed when learning general ASP programs, but in this special case (where there
is only a single ILASP positive example, and no negative examples) it is unnecessary
and computationally expensive. We refer the reader to Law’s thesis 2018 for a detailed
comparison of ILASP2 and ILASP316.

To show the versatility of Popper, we modified Popper to test programs using ASP
rather than Prolog. In other words, instead of learning Prolog programs, we set Popper to
learn Datalog programs. Figure 11 shows the results as PopperASP . As expected, there is
no difference in terms of predictive accuracies but PopperASP can learn programs quicker
than Popper because, in this problem, testing hypotheses using ASP is quicker than with
Prolog.

The results from this experiment suggest that the answers to questions Q1 and Q2
are yes. The results also suggest that the answer to Q3 is that Popper scales well and
better-than state-of-the-art ILP systems with respect to the domain size.

5.3 List transformation problem

The purpose of this third experiment is to evaluate how well Popper performs on difficult
(mostly recursive) list transformation problems. Learning recursive programs has long
been considered a difficult problem in ILP (Muggleton et al., 2012) and most ILP and pro-
gram synthesis systems cannot learn recursive programs. Metagol, ILASP2, and ILASP3

16 We thank the ILASP2 and ILASP3 authors for this explanation.
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can learn recursive programs. However, as the previous experiment showed, ILASP2 and
ILASP3 struggle on large domains. We therefore compare Popper against Enumerate and
Metagol.

5.3.1 Materials

We evaluate the systems on the ten list transformation tasks shown in Table 4. These tasks
include a mix of monadic (e.g. evens and sorted), dyadic (e.g. droplast and finddup),
and tradic (dropk) target predicates. The tasks also contain a mix of functional (e.g. last
and len) and relational problems (e.g. finddup and member). These tasks are extremely
difficult for ILP systems. To learn solutions for them that generalise, an ILP system needs
to support recursion and large domains. As far as we are aware, no existing ILP system
can learn optimal solutions for all of these tasks without being provided with a very
strong inductive bias17.

We give each system the predicate declarations shown in Figure 12. Note that we
use increment/2 only in the len experiment. We had to remove this relation from the
BK for the other experiments because when given this relation Metagol runs into infinite
recursion18 on almost every problem and could not find any solutions.

Popper and Enumerate settings We set Popper and Enumerate to use at most 6 unique
variables, at most 5 body literals, and at most 2 clauses. For each BK relation, we also pro-
vide both systems with simple types and argument directions (whether input or output).
In Section 5.5, we evaluate how sensitive Popper is to these parameters. Because Popper
and Enumerate can generate non-terminating Prolog programs, we set both systems to
use a testing timeout of 0.1 seconds per example.

Metagol settings For Metagol, we use almost the same metarules as in the previous robot
experiment (Figure 10). However, when given the inverse metarule P(A, B) ← Q(B, A),
Metagol could not learn any solution, again because of infinite recursion. Note that if we
pick specific metarules for each task, then Metagol would perform better. To aid Metagol,
we therefore replace the inverse metarule with the identify metarule, i.e. P(A, B) ←
Q(A, B). In addition, when we first ran the experiment with randomly ordered examples,
we found that Metagol struggled to find solutions for all the problems (except member).
The reason is that Metagol is sensitive to the order of examples because it is example-
driven. Therefore, to aid Metagol, we provide the examples in increasing size (i.e. the
length of the input lists).

5.3.2 Methods

For each problem, we generate 10 positive and 10 negative training examples, and 1000
positive and 1000 negative testing examples. The default predictive accuracy is therefore

17 As mentioned in Section 2.3, some inverse entailment methods (Muggleton, 1995) might sometimes learn
solutions for them. However, these approaches would need an ‘base case’ example to learn the base
case of a recursive program, and then an example to learn the inductive base, and preferably in that
order. Moreover, these approaches would not be guaranteed to learn the optimal solution. Metagol could
possibly learn solutions for them if given the exact metarules needed, but that requires that you know
the solution before you try to learn it.

18 Because Metagol induces hypotheses by partially constructing and evaluating hypotheses, it is very difficult to
impose a timeout on a particular hypothesis, which we can easily do with Popper.
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Name Description Example solution

addhead Prepend the head three times addhead(A,B):−head(A,C),cons(C,A,D),cons(C,D,E),cons(C,E,B).

dropk Drop the first k elements dropk(A,B,C):−one(B),tail(A,C).
dropk(A,B,C):−tail(A,D),decrement(B,E),dropk(D,E,B).

droplast Drop the last element droplast(A,B):−tail(A,B), tail (B,C),empty(C).
droplast(A,B):−tail(A,C),droplast(C,D),head(A,E),cons(E,D,B).

evens Check all elements are even evens(A):−empty(A).
evens(A):−even(A),tail(A,C),evens(C).

finddup Find duplicate elements finddup(A,B):−head(A,B),tail(A,C),member(B,C).
finddup(A,B):−tail(A,C),finddup(C,B).

last Last element last (A,B):−tail(A,C),empty(C),head(A,B).
last (A,B):−tail(A,C), last (C,B).

len Calculate list length len(A,B):−empty(A),zero(B).
len(A,B):−tail(A,C),len(C,D),succ(D,B).

member Member of a list member(A,B):−head(A,B).
member(A,B):−tail(A,C),member(C,B).

sorted Check list is sorted sorted(A):−empty(A).
sorted(A):−head(A,B),tail(A,C),head(C,D),geq(D,B),sorted(C).

threesame First three elements are identical threesame(A):−head(A,B),tail(A,C),head(C,B),tail(C,D),head(D,B).

Table 4: List transformation problems.

body_pred(head,2).
body_pred(tail,2).
body_pred(increment,2).
body_pred(decrement,2).
body_pred(geq,2).

body_pred(empty,1).
body_pred(zero,1).
body_pred(one,1).
body_pred(even,1).
body_pred(odd,1).

Fig. 12: Predicate declarations used by Popper, Enumerate, and Metagol in the list trans-
formation experiments. We also provide head_pred(P,A) and body_pred(P,A) declara-
tions, where P and A are the target predicate symbol and arity respectively.

50%. Each list is randomly generated and has a maximum length of 50. We sample the
list elements uniformly at random from the set {1, 2, . . . , 100} (this choice is arbitrary
and Popper and Metagol can handle much larger values). We measure the predictive
accuracy and learning times. We enforce a timeout of 2 minutes per task. We repeat
each experiment 10 times and plot the standard error.

5.3.3 Results

Table 5 shows the results. Popper equals or outperforms Enumerate on all the tasks
in terms of predictive accuracies. Popper outperforms Enumerate on all but one of the
tasks in terms of learning times. The exception is the last problem, where it is easier to
simply enumerate all programs rather than use constraints. However, this difference is
negligible. This result again suggests that the answer to Q1 is yes.
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Accuracies Times

Name Popper Enumerate Metagol Popper Enumerate Metagol

addhead 100 ± 0 100 ± 0 50 ± 0 1 ± 0 3 ± 0 120 ± 0
dropk 100 ± 0 50 ± 0 50 ± 0 1 ± 0 120 ± 0 120 ± 0
droplast 100 ± 0 50 ± 0 50 ± 0 39 ± 4 120 ± 0 120 ± 0
evens 100 ± 0 50 ± 0 55 ± 5 4 ± 0.41 120 ± 0 109 ± 11
finddup 99 ± 0 80 ± 0 100 ± 0 13 ± 2 57 ± 18 2 ± 0
last 100 ± 0 100 ± 0 100 ± 0 0.72 ± 0.11 0.55 ± 0.08 0.83 ± 0.09
len 100 ± 0 50 ± 0 50 ± 0 7 ± 1 120 ± 0 120 ± 0
member 100 ± 0 100 ± 0 75 ± 8 0.14 ± 0.01 2 ± 0.01 0.42 ± 0.01
sorted 100 ± 6 50 ± 0 50 ± 0 77 ± 7 120 ± 0 120 ± 0
threesame 99 ± 0 99 ± 0 99 ± 0 0.32 ± 0.02 0.47 ± 0.04 0.35 ± 0.06

Table 5: List transformation predictive accuracies and learning times. We round predic-
tive accuracies to integer values. We round learning times over 1 second to the nearest
second. The error is standard error.

Popper equals or outperforms Metagol on all but one task in terms of predictive
accuracy. The exception is the finddup problem, where there is only a 1% difference.
Popper outperforms Metagol in terms of learning times in almost all cases. Note that
Metagol could never learn a solution for dropk because it does not support triadic literals
because of the metarule constraints. This result again suggests that the answer to Q2 is
yes.

5.4 Scalability

Our primorial experiment showed that Popper scales well in the size of the optimal so-
lution size compared to Enumerate, ILASP, FastLAS, and Metagol. Our robot experiment
showed that Popper scales well in the size of the domain compared to ILASP, FastLAS,
and Metagol. The purpose of this experiment is to evaluate how well Popper scales in
terms of the (1) number of examples, and (2) the size of examples. To do so, we re-
peat the last experiment from Section 5.3, where Popper and Metagol achieved similar
performance.

5.4.1 Materials

We use the same materials as Section 5.3.

5.4.2 Settings

We run two experiments. In the first experiment we vary the number of examples. In the
second experiment we vary the size of the examples (the size of the input list). For each
experiment, we measure the predictive accuracy and learning times averaged over 10
repetitions.

Number of examples For each n in {1,2, . . . , 10}, we generate 3n positive and 3n negative
training examples, and 1000 positive and 1000 negative testing examples, where each
list has a maximum length of 100 and each element is a random integer from the range
1 to 1000.
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Example size For each s in {50,100, 150, . . . , 500}, we generate 10 positive and 10 neg-
ative training examples, and 1000 positive and 1000 negative testing examples, where
each list is of length s and each element is a random integer from the range 1 to 1000.

5.4.3 Results

Figure 13 shows the results when varying the number of training examples. The predic-
tive accuracies of Popper and Metagol are almost identical until around 104 examples.
Given this many examples, Metagol struggles to find a solution in two minutes and even-
tually converges on the default predictive accuracy (50%). After almost 105 examples,
Popper struggles to find a solution in two minutes. The reason is simply the overhead
of testing hypotheses on that many examples. The log-log plot in Figure 13 shows that
the learning times of both systems scale linearly in the number of examples, although
Popper is twice as quick as Metagol in almost all cases. These results suggest that the
answer to Q3 is that Popper scales well with respect the number of examples.
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Fig. 13: The experimental results for the last task when varying the number of training
examples.

Figure 14 shows the results when varying the size of the input (i.e. the size of the
input list). The predictive accuracies and learning times of Popper remain almost con-
stant as the size of the input grows. The mean learning times of Popper for examples of
length 50 and 500 are 2 and 3 seconds respectively. The reason is that Popper only uses
the examples to test a hypothesis, so any increase in running time simply comes from
executing the hypotheses using Prolog. By contrast, Metagol’s performance drastically
degrades as the size of the examples grows. The mean learning times for Metagol for
examples of length 50 and 500 are 15 and 84 seconds respectively. The reason is that
Metagol uses the examples to search for a hypothesis by inducing and executing partial
programs over the examples. These results suggest that the answer to Q2 is yes and the
answer to Q3 is that Popper scales well with respect to the size of examples.
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Fig. 14: The experimental results for the last task when varying the size (list length) of
training examples.

5.5 Sensitivity

The learning from failures hypothesis space (Proposition 1) is a function of the number
of predicate declarations and three other variables:

– the maximum number of unique variables in a clause
– the maximum number of body literals allowed in a clause
– the maximum number of clauses allowed in a hypothesis

The purpose of this experiment is to evaluate how sensitive Popper is to these parame-
ters. To do so, we repeat the len experiment from Section 5.3 with the same BK, settings,
and method, except we run three separate experiments where we vary the three afore-
mentioned parameters.

5.5.1 Results

Figure 15 shows the experimental results. The results show that Popper is sensitive to the
maximum number of unique variables, which has a strong influence on learning times.
This result follows from Proposition 1 because more variables implies more ways to form
literals in a clause. Somewhat surprisingly, doubling the number of variables from 4 to
8 has little difference on performance, which suggests that Popper is robust to imperfect
parameters.

The results show that Popper is mostly insensitive to the maximum number of body
literals in a clause. The main reason is that Popper does not pre-compute every possible
clause in the hypothesis space, which is, for instance, the case with ILASP and many
program synthesis systems, especially SAT approaches.

The results show that Popper is mostly insensitive to the maximum number of clauses.
The main reason is because of the way Popper searches for programs of increasing size.
For instance, for a program of size 4 (e.g. with four literals), due to constraints on the
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hypothesis space (Section 4.1), it is impossible to generate a program with three clauses,
since each clause must have a head and body literal.

Overall these results suggest that Popper is scales well with the maximum number of
clauses and body literals parameters, but struggles with large values for the maximum
number of unique variables.
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Fig. 15: The experimental results for the len task when varying the maximum number
of unique variables (a), maximum body literals in a clause (b), and maximum number
of clauses (c).

6 Conclusions and limitations

We have introduced an ILP approach called learning programs by learning from failures.
Our approach decomposes the ILP problem into three separate stages: generate, test,
and constrain. In the generate stage, the learner generates a hypothesis that satisfies
a set of hypothesis constraints (Definition 6). In the test stage, the learner tests a hy-
pothesis against training examples. If a hypothesis fails, then, in the constrain stage, the
learner learns hypothesis constraints from the failed hypothesis to prune the hypothesis
space, i.e. to constrain subsequent hypothesis generation. In Section 3.5, we introduced
three types of constraints: generalisation, specialisation, and elimination and proved their
soundness in that they do not prune optimal solutions (Definition 14). This loop repeats
until (1) the learner finds an optimal solution, or (2) there are no more hypotheses to
test.

We implemented our idea in Popper, an ILP system that learns definite programs. Pop-
per combines ASP and Prolog to support types, learning optimal solutions, learning re-
cursive programs, reasoning about lists and infinite domains, and hypothesis constraints.
To improve efficiency, Popper uses multi-shot solving to combine the three stages. We
showed that Popper is sound and complete with respect to optimal solutions (Theorem
1).

We evaluated our approach on three diverse domains (number theory problems,
robot strategies, and list transformations). Our experiment results show that (1) con-
straints drastically reduce the hypothesis space, (2) Popper can substantially outperform
state-of-the-art ILP systems Metagol, ILASP2, ILASP3, and FastLAS, both in terms of pre-
dictive accuracies and learning times, (3) Popper scales well with respect to domain size,
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the number of training examples, and the size of the training examples, and (4) Popper
is reasonably robust to its parameters.

6.1 Limitations and future work

Popper, as implemented in this paper, has several limitations that future work should
address.

6.1.1 Predicate invention

Predicate invention has been shown to help reduce the size of target programs, which
in turns reduces sample complexity and improves predictive accuracy (Cropper, 2019b;
Dumancic et al., 2019). Popper does not currently support predicate invention, but we
plan to support it in future work. There are two straightforward ways to support predi-
cate invention. Popper could mimic Metagol by imposing metarules to restrict the form
of clauses in a hypothesis and to guide the invention of new predicate symbols. Alter-
natively Popper could mimic ILASP by support prescriptive predicate invention (Cropper
et al., 2019a), where the arity and (in ILASP’s case, argument types) are pre-specified by
the language bias. Most of the results in this paper should extend to both approaches.

6.1.2 Noise

Most ILP systems handle noisy (misclassified) examples (Table 1). Popper does not cur-
rently support noisy examples. Our initial results suggest that we can address this issue
by relaxing when to apply learned hypothesis constraints and by maintaining the best
hypotheses tested during the learning, i.e. the hypothesis which entails the most positive
and the fewest negative examples. However, our early results suggest that noise handling
increases learning times, which future work should explore.

6.1.3 Hypotheses

In most of our experiments Popper learns definite programs and tests them using Prolog.
However, in Section 5.2, Popper learns Datalog programs and tests them using ASP. In
future work, we want to consider learning other types of programs. For instance, most
of our pruning techniques (except the elimination constraint) should extend to learning
non-monotonic programs, such as Datalog with stratified negation.

6.1.4 Better search

Popper is only one implementation of our learning from failures idea. An advantage
of our separate three staged approach is that it allows for a variety of algorithms and
implementations. Moreover, each stage can be improved independently of the others.
For instance, any improvement to the Popper ASP encoding that generates programs
would have a major influence on learning times because it would reduce the number
of programs to test. Likewise, we can also optimise the testing step. For instance, in
Section 5.2, we used ASP, rather than Prolog, to test hypotheses, which, in some cases,
reduced learning times by 50%. Moreover, by decomposing the ILP problem into three
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stages, our approach might mitigate the combinatorial and grounding problems faced
by systems that solve the ILP problem as a single (and often very large) SAT problem
(Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2018; Evans and Grefenstette,
2018; Evans et al., 2019).

6.1.5 Better constraints

Hypothesis constraints are central to our idea. Popper uses predefined constraints to
prune redundant programs from the hypothesis space (Section 4.1), such as recursive
programs without a base case and subsumption redundant program. A key idea of our
approach is to learn constraints from failures. We think the most promising direction for
future work is to improve both types of constraints (predefined and learned).

Types. Like many ILP systems (Muggleton, 1995; Blockeel and Raedt, 1998; Srinivasan,
2001; Law et al., 2014; Evans and Grefenstette, 2018), Popper supports simple types to
prune the hypothesis space. However, more complex types, such as polymorphic types
(parameterised types), can achieve better pruning for programs over structured data
(Morel et al., 2019). For instance, polymorphic types would allow us to distinguish be-
tween using a predicate on a list of integers and on a list of characters. Refinement types
(Polikarpova et al., 2016), i.e. types annotated with restricting predicates, could allow
a user to specify stronger program properties (other than examples), such as requiring
that a reverse program provably has the property that the lengths of the input and output
are the same. In future work we want to explore whether we can express such complex
types as hypothesis constraints.

Learned constraints. The constraints described in Section 3.5 prune specialisations and
generalisations of a failed hypothesis. However, we have only briefly analysed the prop-
erties of these constraints. We showed that these constraints are sound (Propositions 3
and 4), in that they do not prune optimal solutions. We have not, however, considered
their completeness, in that they prune all non-optimal solutions. Indeed, our elimination
constraint, for the special case of non-recursive definite programs, prunes hypotheses
that the generalisation and specialisation constraints miss. In other words, the theory
regarding which constraints to use is yet to be developed, and there may be many more
constraints to be learned from failed hypotheses, all of which should drastically improve
learning performance. By contrast, refinement operators for clauses (Shapiro, 1983;
Raedt and Bruynooghe, 1993; Nienhuys-Cheng and Wolf, 1997) and theories (Nienhuys-
Cheng and Wolf, 1997; Midelfart, 1999; Badea, 2001) have been studied in detail in ILP.
Therefore, we think that this paper opens a new direction of research into identifying
and analysing different constraints that we can learn from failed hypotheses.
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A Popper metarule theory constraints

A.1 Metarules

Let M be an arbitrary metarule, i.e. a second-order Horn clause which quantifies over predicate symbols.
For example, P(A,B):-Q(A,C),R(C,B) is known as the chain metarule. All letters are quantified variables,
with P, Q, and R being second-order, i.e. needing to be substituted for by predicate symbols.

A.2 From a metarule to literals

Let M = head:-body1, . . . ,bodym be a metarule. We use the clause encoding function encodeSizedClause
from section 4.3.2 to derive an encoding of a metarule.

Example 13 Consider M = P(A,B):-Q(A,C),R(C,B). Its encoding, encodeSizedClause(Clause, M), is

head_literal(Clause,P,2,(V0,V1)),
body_literal(Clause,Q,2,(V0,V2)),body_literal(Clause,R,2,(V2,V1)),
V0!=V1,V0!=V2,V1!=V2,clause_size(Clause,2)

A.3 Asserting metarule conformance

Let Ms be a set of metarules. For each clause of a metarule conformant program, the clause must be an
instance of one of the metarules in Ms. A clause C is an instance of metarule M ∈ Ms if there exists
substitution θ such that Mθ = C .

We introduce two rules to ensure every clause of a generated program is an instance of at least one
metarule. The first rule identifies when there exists some metarule for which the clause is an instance.
The second rule is a constraint expressing that every clause of a program must be identified as being an
instance of at least one metarule.
For each M ∈Ms, generate the following rule of the first kind:

meta_clause(Clause):-encodeSizedClause(Clause, M).

The second rule is:
:-clause(Clause),not meta_clause(Clause).
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