
Playgol: learning programs through play

Examples

Background
knowledge

Learner Computer
program

Program induction

Examples

input output
dog g

sheep p
chicken ?

Examples Background knowledge

• head/2
• tail/2
• empty/1

input output
dog g

sheep p
chicken ?

Examples

f(A,B):-tail(A,C),empty(C),head(A,B).
f(A,B):-tail(A,C),f(C,B).

Background knowledge

• head/2
• tail/2
• empty/1

input output
dog g

sheep p
chicken n

Where do we get background
knowledge from?

Hand-crafted rules

Supervised multi-task learning

[Lin et al. ECAI14]
 [Ellis et al. NIPS18]

Unsupervised learning

[Dumancic et al. IJCAI19]

Self-supervised play

Playgol

1. Play (self-supervised)
2. Build (supervised)

Playing

1. Sample random tasks from the instance space
2. Learn programs to them
3. Add programs to the BK

def play(instance_space,bk,playtime,max_depth):
 play_tasks = sample(instance_space,p)
 for d to max_depth:
 solved,new_bk = learn(play_tasks,bk,max_depth)
 play_tasks = play_tasks - solved
 bk = bk + new_bk
return bk

def learn(play_tasks, bk, depth):
 solved = []
 programs = []
 for task in play_tasks:
 program = metagol(bk, task, max_depth)
 if program != null:
 programs = programs + program
 solved = solved + task
 return solved, programs

Building

Solve user-supplied tasks using the augmented BK

Why should it work?

We increase branching but reduce depth

Does it work?

Q1. Can playing improve performance?

Q2. Can playing improve performance without
many play tasks?

Q3. Can predicate invention improve performance?

Robot planning

2000 << 5,000,000

We should need to sample 24,000,000 play tasks

String transformations

Real-world build tasks

Play tasks

build_95(A,B):-play_228(A,C),play_136_1(C,B).
play_228(A,B):-play_52(A,B),uppercase(B).
play_228(A,B):-skip1(A,C),play_228(C,B).
play_136_1(A,B):-play_9(A,C),mk_uppercase(C,B).
play_9(A,B):-skip1(A,C),mk_uppercase(C,B).
play_52(A,B):-skip1(A,C),copy1(C,B).

build_95(A,B):-play_228(A,C),play_136_1(C,B).

play_228(A,B):-play_52(A,B),uppercase(B).
play_228(A,B):-skip1(A,C),play_228(C,B).

Task Input Output
228 I6zihQk- Q

play_228(A,B):-play_52(A,B),uppercase(B).
play_228(A,B):-skip1(A,C),play_228(C,B).
play_52(A,B):-skip1(A,C),copy1(C,B).

Task Input Output
228 I6zihQk- Q
52 @B4\X¿3MjKdyZzC B

Task Input Output
228 I6zihQk- Q
52 @B4\X¿3MjKdyZzC B

skip_to_uppercase_and_copy

build_95(A,B):-
 skip_to_uppercase_and_copy(A,C),
 play_136_1(C,B).

play_136_1(A,B):-play_9(A,C),mk_uppercase(C,B).
play_9(A,B):-skip1(A,C),mk_uppercase(C,B).

play_136_1(A,B):-
 skip1(A,C),
 mk_uppercase(C,D),
 mk_uppercase(D,B).

play_136_1(A,B):-
 skip1(A,C),
 mk_uppercase(C,D),
 mk_uppercase(D,B).

build_95(A,B):-
 skip_to_uppercase_and_copy(A,C),
 skip1(A,C),
 mk_uppercase(C,D),
 mk_uppercase(D,B).

Conclusions

Playing allows an ILP system to self-discover
reusable programs

Limitations and future work

Need to define instance space

When does it work?

Better curious sampling

Forgetting methods (lots of BK)

