Forgetting to learn logic programs

Andrew Cropper

University of Oxford

Program induction/synthesis

Program induction/synthesis

Examples

input	output
dog	g
sheep	р
chicken	?

Examples

Background knowledge

input	output
dog	g
sheep	р
chicken	?

head tail empty

Examples Background knowledge

input	output
dog	g
sheep	р
chicken	?

head tail empty

```
def f(a):
    t = tail(a)
    if empty(t):
        return head(a)
    return f(t)
```

Examples Background knowledge

input	output
dog	g
sheep	р
chicken	n

head tail empty

```
def f(a):
    t = tail(a)
    if empty(t):
        return head(a)
    return f(t)
```

Examples Background knowledge

input	output
dog	g
sheep	р
chicken	n

head tail empty

f(A,B):-tail(A,C),empty(C),head(A,B).
f(A,B):-tail(A,C),f(C,B).

Background knowledge defines the hypothesis space

Where does background knowledge come from?

Hand-crafted rules

[almost every approach]

Unsupervised learning

ALPS [Dumančić et al. IJCAI 2019] Playgol [Cropper. IJCAI 2019]

Supervised multi-task learning

Use knowledge gained from solving one problem to help solve a different problem

Metabias [Lin et al. ECAI 2014] Dreamcoder [Ellis et al. NIPS 2018]

Why does it work?

We increase branching but reduce depth

Problem: big branching factor

Idea

Forget things

ILP problem

Given:

- background knowledge B
- positive examples E+
- negative examples E-

ILP problem

Return:

A hypothesis **H** that with **B** entails **E+** and not **E+**

Forgetting problem

Given background knowledge **B**

Return $\mathbf{B'} \subset \mathbf{B}$ from which you can still learn the target hypothesis

Why?

Reduce branching and sample complexity

How?

Forgetgol, a multi-task ILP system based on Metagol, which takes a forgetting function as input

Forgetgol

Continually **expands** and **shrinks** its hypothesis space

Syntactical forgetting (lossless)

- 1. Unfold each induced clause to remove invented predicate symbols
- 2. Check whether a syntactically duplicate clause already exists

Statistical forgetting

Assigns a cost to each clause based on:

- 1. How difficult it was to learn
- 2. How likely it is to be reused

Does it work?

Q. Can forgetting improve learning performance?

We compare:

Metabias: remember everything Metagol: remember nothing

Forgetgol_{syn}: syntactical forgetting **Forgetgol**_{stat}: statistical forgetting

Robot planning

(a) Program

tasks

What happened?

Metabias rarely induces a program with more than two clauses because of program reuse

Lego building

What happened?

Less reuse (and greater search depth) so forgetting has more effect

Conclusions

Forgetting can improve learning performance when given >10,000 tasks, but, surprisingly, not by much

Limitations and future work

Better forgetting methods

Larger and more diverse datasets

Concept shift

Recency

Other program induction systems