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• A new very simple form of ILP  
• Same functionality as existing approaches 
• Much better performance 
• Opens up new areas of research

What is this talk about?



Examples

Background 
knowledge

ML 
system Computer 

program

Program induction



A form of ML that uses logic programming to represent 
data and hypotheses.

Inductive logic programming



Examples

input output
dog g

sheep p
chicken n

representation
last(dog,g)

last(sheep,p)
last(chicken,n)



BK

head([H|_],H). 
tail([_|T],T). 
empty(A). 
double(A,B):-A is B+B.



Hypothesis

last(A,B):-tail(A,C),empty(C),head(A,B). 
last(A,B):-tail(A,C),f(C,B).



• bottom-up 
• top-down 
• meta-level

How?

Approaches date back to Banerji (1964), Michaslski (1969), and Plotkin (1971).



Start with a specific program and generalise it

Advantages Disadvantages

• Fast  
• Infinite domains

• Optimality 
• Recursion 

Bottom-up 
 (example driven)

LGG (Plotkin,1970), Golem (Muggleton, 1990),  
Progol (Muggleton, 1995)

This approach is entirely different to bottom-up approaches described by Solar-
Lezama in his lecture notes.



Start with a general program and specialise it

Advantages Disadvantages

• Recursion • Slow

Top-down 
(test-driven)

FOIL (Quinlan 1990),  TILDE (Blockeel & De Raedt, 1998),  
Hyper (Bratko, 1999)

‘Reinvented’ as test-driven synthesis (Perelman et al, 2014)



Delegate the search to something else 

Advantages Disadvantages

• Recursion 
• Completeness 
• Optimality

• Slow 
• Small domains

Meta-level

ILASP (Law et al, 2014), DILP (Evans and & Grefenstette, 2018),  
HEXMIL (Kaminski et al., 2019), Apperception (Evans et al., 2019)

Major limitation is that these approaches all precompute all possible rules.



Advantages Disadvantages

• Optimality 
• Completness 
• Recursion 
• Infinite domains 
• Fast 
• Simple

• Noise

Learning from failures

This approach is similar but different to CEGIS as we do not produce counter-examples.



Learning from failures

1. Generate 
2. Test 
3. Constrain



Learning from failures

Automates Karl Popper’s idea of falsification: 

1. Build a program (form a conjecture) 
2. Test it against training examples 
3. If it fails (is refuted), explain why  
4. Use the explanation to rule out other programs

MIS (Shaprio, 1983)



(we generate hypothesis constraints, not counter-examples)



input output
laura a

penelope e
emma m
james e



input output
laura a

penelope e
emma m
james e



Hypothesis space is much larger (and can be infinite)





input output entailed 
laura a no

penelope e no
emma m no
james e no



input output entailed 
laura a no

penelope e no
emma m no
james e no

H1 is too specific



Prune specialisations



Prune specialisations



Prune specialisations



Prune specialisations





input output entailed 
laura a yes

penelope e yes
emma m yes
james e no



input output entailed 
laura a yes

penelope e yes
emma m yes
james e no

H4 is too general



Prune generalisations



Prune generalisations



Prune generalisations



Prune generalisations





input output entailed 
laura a yes

penelope e yes
emma m no
james e no

H5 does not fail, so return it



1. Refine the hypothesis space through learned 
hypothesis constraints 

2. Decompose the learning problem (i.e. do not 
just throw the whole problem to a SAT solver)

Key ideas



• Generalisation 
• Specialisation 
• Elimination

Constraints are sound: they do not prune optimal solutions 

(see paper for details)

Hypothesis constraints



1. Generate  (ASP program) 
2. Test (Prolog) 
3. Constrain (ASP program)

Popper



Meta-level ASP program, i.e. models are programs

Generate

Declarative!



Adding constraints eliminates models and thus programs

Generate

Hard-coded intuitive constraints are important, but they could be learned



Generate

Optional constraints are trivial to express



1. Fast 
2. Infinite domains 
3. Complex data structures

Test using Prolog

Could use a Datalong engine, or an ASP solver, or something else



Constrain

The above is a generalisation constraint



Uses clingo’s multi-shot solving to remember state

Popper



Popper

No sketches / templates, such as in Metagol, DILP, Sketch, or SyGuS 



Q1. Can constraints improve learning performance, 
i.e. does it outperform pure enumeration? 

Q2. Can Popper outperform SOTA ILP systems? 

Q3. How well does Popper scale?

Does it work?

Run on a MacBook pro on a single CPU with a timeout of two minutes



Primorials

Hypothesis space contains about 1013 programs

Purposely simple experiment to test the claims



Primorials

(program size)



Robots

• n × n grid world. 

• keep moving upwards until you cannot move 
upwards any more 

• 5 positive and 5 negative examples



Robots accuracy



Robots learning time



Programming puzzles



Programming puzzles

(we have since cut Popper learning times by 1/2)



Scalability: number of examples



Scalability: size of examples



Sensitivity

• the maximum number of unique variables in a clause 
• the maximum number of body literals allowed in a clause 
• the maximum number of clauses allowed in a hypothesis

Bottleneck is the number of variables in a clause



Conclusions

Simplicity: LFF is a simple form of ILP that does 
need metarules, strong priors, etc. 

Performance: Popper significantly outperforms 
SOTA approaches. 

Feature rich: Popper supports recursion, infinite 
domains, and learning optimal programs.



Limitations

• Noise 
• Negation 
• Predicate invention



Future work

Constraints: What can we learn from failures? 

Search: Proving unsatisfiability at each program size is 
the major bottleneck. Would it be better to try larger 
programs to learn more from failing? 

Parallelisation: How to search in parallel?  

Applications: IGGP and ARC datasets



Papers
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Turning 30: new ideas in inductive logic programming. 
Cropper, Dumančić, and Muggleton. IJCAI2020. 

Inductive logic programming at 30: a new introduction. Cropper 
and Dumančić. In preparation.


