Learning programs by learning from failures

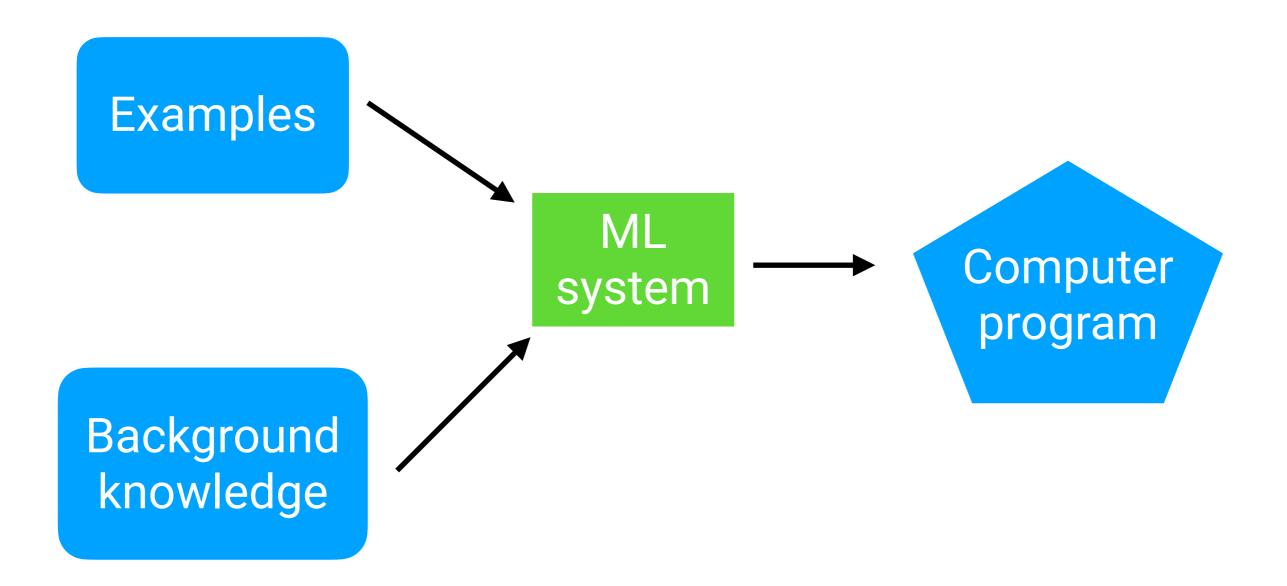
(Popper)

Andrew Cropper and Rolf Morel

What is this talk about?

- A new **very simple** form of ILP
- Same functionality as existing approaches
- Much better performance
- Opens up new areas of research

Program induction



Inductive logic programming

A form of ML that uses logic programming to represent data and hypotheses.

	Journal of Artificial Intelligence Research 1 (1993) 1-15	Submitted 6/91; published 9/91
	Inductive logic programming work in progress - fe	-
	Andrew Cropper University of Oxford	ANDREW.CROPPER@CS.OX.AC.UK
020	Sebastijan Dumančić KU Leuven	SEBASTIJAN.DUMANCIC@CS.KULEUVEN.BE
	Abstr	act
AI] 18 Aug 2020	Inductive logic programming (ILP) is a form induce a logic program (a set of logical rules) to proaches 30, we provide a new introduction to notation and the main ILP learning settings. We system. We compare several ILP systems on seven TILDE, ASPAL, and Metagol). We contrast ILP v we summarise the current limitations and outlin	the field. We introduce the necessary logical e describe the main building blocks of an ILP cal dimensions. We detail four systems (Aleph, with other forms of machine learning. Finally,

Examples

input	output
dog	g
sheep	р
chicken	n

representation

last(dog,g) last(sheep,p) last(chicken,n)

BK

head([H|_],H). tail([_|T],T). empty(A). double(A,B):-A is B+B.

Hypothesis

last(A,B):-tail(A,C),empty(C),head(A,B). last(A,B):-tail(A,C),f(C,B).

How?

- bottom-up
- top-down
- meta-level

Approaches date back to Banerji (1964), Michaslski (1969), and Plotkin (1971).

Bottom-up (example driven)

Start with a specific program and generalise it

Advantages	Disadvantages
FastInfinite domains	OptimalityRecursion

LGG (Plotkin,1970), Golem (Muggleton, 1990), **Progol** (Muggleton, 1995)

This approach is entirely different to bottom-up approaches described by Solar-Lezama in his lecture notes.

Top-down (test-driven)

Start with a general program and specialise it

Advantages	Disadvantages
 Recursion 	 Slow

FOIL (Quinlan 1990), TILDE (Blockeel & De Raedt, 1998), Hyper (Bratko, 1999)

'Reinvented' as test-driven synthesis (Perelman et al, 2014)

Meta-level

Delegate the search to something else

Advantages	Disadvantages
RecursionCompletenessOptimality	SlowSmall domains

ILASP (Law et al, 2014), DILP (Evans and & Grefenstette, 2018), HEXMIL (Kaminski et al., 2019), Apperception (Evans et al., 2019)

Major limitation is that these approaches all precompute all possible rules.

Learning from failures

Advantages	Disadvantages
 Optimality Completness Recursion Infinite domains Fast Simple 	• Noise

This approach is similar but different to CEGIS as we do not produce counter-examples.

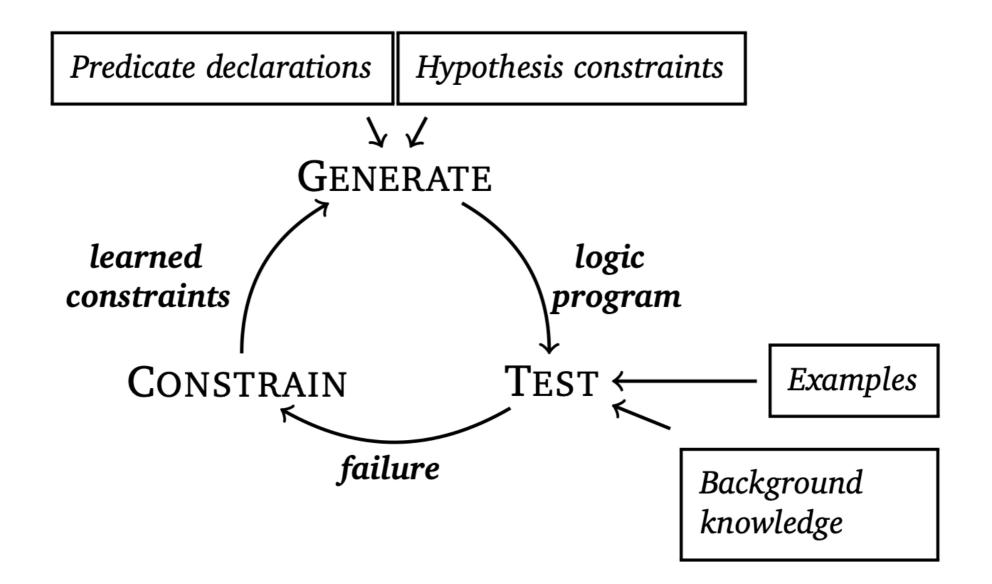
Learning from failures

- 1. Generate
- 2. Test
- 3. Constrain

Learning from failures

Automates Karl Popper's idea of falsification:

- 1. Build a program (form a conjecture)
- 2. Test it against training examples
- 3. If it fails (is refuted), **explain why**
- 4. Use the **explanation** to rule out other programs



(we generate hypothesis constraints, not counter-examples)

input	output
laura	а
penelope	е
emma	m
james	е

input	output
laura	а
penelope	е
emma	m
james	е

$$E^{+} = \left\{ \begin{array}{l} last([l,a,u,r,a],a). \\ last([p,e,n,e,l,o,p,e],e). \end{array} \right\} \qquad E^{-} = \left\{ \begin{array}{l} last([e,m,m,a],m). \\ last([j,a,m,e,s],e). \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):- head(A,B). \right\} \\ h_{2} = \left\{ last(A,B):- head(A,B), empty(A). \right\} \\ h_{3} = \left\{ last(A,B):- head(A,B), reverse(A,C), head(C,B). \right\} \\ h_{4} = \left\{ last(A,B):- tail(A,C), head(C,B). \right\} \\ h_{5} = \left\{ last(A,B):- reverse(A,C), head(C,B). \right\} \\ h_{6} = \left\{ \begin{array}{l} last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- reverse(A,C), head(C,B). \\ last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- tail(A,C), tail(C,D), head(D,B). \\ last(A,B):- tail(A,C), reverse(C,D), head(D,B). \\ \end{array} \right\}$$

Hypothesis space is much larger (and can be infinite)

$h_1 = \{last(A,B):-head(A,B).\}$

$$h_1 = \{last(A,B):-head(A,B).\}$$

input	output	entailed
laura	а	no
penelope	е	no
emma	m	no
james	е	no

$$h_1 = \{last(A,B):-head(A,B).\}$$

input	output	entailed
laura	а	no
penelope	е	no
emma	m	no
james	е	no

H1 is too specific

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):- head(A,B). \right\} \\ h_{2} = \left\{ last(A,B):- head(A,B), empty(A). \right\} \\ h_{3} = \left\{ last(A,B):- head(A,B), reverse(A,C), head(C,B). \right\} \\ h_{4} = \left\{ last(A,B):- tail(A,C), head(C,B). \right\} \\ h_{5} = \left\{ last(A,B):- reverse(A,C), head(C,B). \right\} \\ h_{6} = \left\{ \begin{array}{l} last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- reverse(A,C), head(C,B). \\ last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- tail(A,C), tail(C,D), head(D,B). \\ last(A,B):- tail(A,C), reverse(C,D), head(D,B). \\ last(A,B):- tail(A,C), reverse(C,D), head(D,B). \\ \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=head(A,B), \\ h_{2} = \left\{ last(A,B):=head(A,B), empty(A). \right\} \\ h_{3} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \right\} \\ h_{4} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ h_{5} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ h_{6} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ last(A,B):=reverse(A,C), head(C,B). \\ last(A,B):=tail(A,C), head(C,B). \\ last(A,B):=tail(A,C), head(C,B). \\ last(A,B):=tail(A,C), tail(C,D), head(D,B). \\ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \\ \end{array} \right\} \\ h_{8} = \left\{ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \\ \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=head(A,B). \right\} \\ h_{2} = \left\{ last(A,B):=head(A,B), empty(A). \right\} \\ h_{3} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \right\} \\ h_{4} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ h_{5} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ h_{6} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ last(A,B):=reverse(A,C), head(C,B). \\ last(A,B):=tail(A,C), head(C,B). \\ last(A,B):=tail(A,C), tail(C,D), head(D,B). \\ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \\ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \\ \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=-head(A,B) \\ h_{2} = \left\{ last(A,B):=-head(A,B), empty(A) \\ h_{3} = \left\{ last(A,B):=-head(A,B), reverse(A,C), head(C,B) \\ h_{4} = \left\{ last(A,B):=-tail(A,C), head(C,B) \\ h_{5} = \left\{ last(A,B):=-reverse(A,C), head(C,B) \\ h_{5} = \left\{ last(A,B):=-tail(A,C), head(C,B) \\ last(A,B):=-reverse(A,C), head(C,B) \\ last(A,B):=-tail(A,C), head(C,B) \\ last(A,B):=-tail(A,C), head(C,B) \\ last(A,B):=-tail(A,C), tail(C,D), head(D,B) \\ last(A,B):=-tail(A,C), reverse(C,D), head(D,B) \\ last(A,B):=-tail(A,C), reverse(C,D), head(D,B) \\ \end{array} \right\}$$

$h_4 = \{last(A,B):-tail(A,C), head(C,B).\}$

$$h_4 = \{last(A,B): - tail(A,C), head(C,B).\}$$

input	output	entailed
laura	а	yes
penelope	е	yes
emma	m	yes
james	е	no

$$h_4 = \{last(A,B): - tail(A,C), head(C,B). \}$$

input	output	entailed
laura	а	yes
penelope	е	yes
emma	m	yes
james	е	no

H4 is too general

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=head(A,B). \right\} \\ \hline h_{2} = \left\{ last(A,B):=head(A,B), empty(A). \right\} \\ \hline h_{3} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \right\} \\ \hline h_{4} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ \hline h_{5} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ \hline h_{6} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ \hline h_{6} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ \hline h_{7} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ \hline h_{8} = \left\{ last(A,B):=reverse(A,C), tail(C,D), head(D,B). \right\} \\ \hline last(A,B):=tail(A,C), reverse(C,D), head(D,B). \right\} \\ \end{array}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=head(A,B). \\ h_{2} = \left\{ last(A,B):=head(A,B), empty(A). \\ h_{3} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \\ h_{4} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \\ h_{5} = \left\{ last(A,B):=reverse(A,C), head(C,B). \\ h_{6} = \left\{ last(A,B):=reverse(A,C), head(C,B). \\ last(A,B):=reverse(A,C), head(D,B). \\ last(A,B):=reverse(A,C), tail(C,D), head(D,B). \\ last(A,B):=reverse(A,C), reverse(C,D), head(D,B). \\ \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \frac{\operatorname{last}(A,B):-\operatorname{head}(A,B).}{\operatorname{h}_{2} = \left\{ \operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{rever} \operatorname{se}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{h}_{3} = \left\{ \operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{rever} \operatorname{se}(A,C),\operatorname{head}(C,B). \right\}} \\ \frac{\operatorname{h}_{4} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{h}_{5} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}} \\ \frac{\operatorname{h}_{6} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}} \\ \operatorname{h}_{7} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}} \\ \operatorname{h}_{8} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{tail}(C,D),\operatorname{head}(D,B). \right\}} \\ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{reverse}(C,D),\operatorname{head}(D,B). \right\}} \right\}$$

$$\mathcal{H}_{1} = \left\{ \frac{\operatorname{last}(A,B):-\operatorname{head}(A,B).}{\operatorname{h}_{2} = \left\{ \frac{\operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{empty}(A).}{\operatorname{h}_{3} = \left\{ \frac{\operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{rever} \operatorname{se}(A,C),\operatorname{head}(C,B).}{\operatorname{h}_{4} = \left\{ \frac{\operatorname{last}(A,B).-\operatorname{tail}(A,C),\operatorname{head}(C,B).}{\operatorname{h}_{5} = \left\{ \operatorname{last}(A,B):-\operatorname{reverse}(A,C),\operatorname{head}(C,B).} \right\} \right\}} \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} \frac{\operatorname{last}(A,B):-\operatorname{reverse}(A,C),\operatorname{head}(C,B).}{\operatorname{last}(A,B):-\operatorname{reverse}(A,C),\operatorname{head}(C,B).} \\ \frac{\operatorname{h}_{6} = \left\{ \frac{\operatorname{last}(A,B):-\operatorname{reverse}(A,C),\operatorname{head}(C,B).}{\operatorname{last}(A,B):-\operatorname{reverse}(A,C),\operatorname{head}(C,B).} \right\} \\ \frac{\operatorname{h}_{7} = \left\{ \frac{\operatorname{last}(A,B):-\operatorname{reverse}(A,C),\operatorname{head}(C,B).}{\operatorname{last}(A,B):-\operatorname{reverse}(A,C),\operatorname{tail}(C,D),\operatorname{head}(D,B).} \right\} \\ \operatorname{h}_{8} = \left\{ \begin{array}{l} \operatorname{last}(A,B):-\operatorname{reverse}(A,C),\operatorname{reverse}(C,D),\operatorname{head}(D,B). \\ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{reverse}(C,D),\operatorname{head}(D,B). \end{array} \right\} \right\}$$

$$h_5 = \{last(A,B): - reverse(A,C), head(C,B). \}$$

$$h_5 = \{last(A,B): - reverse(A,C), head(C,B). \}$$

input	output	entailed
laura	а	yes
penelope	е	yes
emma	m	no
james	е	no

H5 does not fail, so return it

Key ideas

- Refine the hypothesis space through learned hypothesis constraints
- 2. Decompose the learning problem (i.e. do not just throw the whole problem to a SAT solver)

Hypothesis constraints

- Generalisation
- Specialisation
- Elimination

Constraints are **sound:** they do not prune **optimal** solutions

(see paper for details)

Popper

- 1. Generate (ASP program)
- 2. Test (Prolog)
- 3. Constrain (ASP program)

Generate

Meta-level ASP program, i.e. models are programs

```
% possible clauses
allowed_clause(0..N-1):- max_clauses(N).
                                                          Declarative!
% variables
var(0..N-1):- max_vars(N).
% clauses with a head literal
clause(Clause):- head_literal(Clause,_,_).
%% head literals
0 {head_literal(Clause,P,A,Vars): head_pred(P,A), vars(A,Vars)} 1:-
    allowed_clause(Clause).
%% body literals
1 {body_literal(Clause,P,A,Vars): body_pred(P,A), vars(A,Vars)} N:-
    clause(Clause), max_body(N).
% variable combinations
vars(1,(Var1,)):- var(Var1).
vars(2,(Var1,Var2)):- var(Var1),var(Var2).
vars(3,(Var1,Var2,Var3)):- var(Var1),var(Var2),var(Var3).
```

Generate

Adding constraints eliminates models and thus programs

```
recursive:- recursive(Clause).
```

```
recursive(Clause):- head_literal(Clause,P,A,_), body_literal(Clause,P,A,_).
```

```
has_base:- clause(Clause), not recursive(Clause).
```

```
% need multiple clauses for recursion
```

```
:- recursive(_), not clause(1).
```

% prevent recursion without a basecase

:- recursive, not has_base.

Hard-coded intuitive constraints are important, but they could be learned

Generate

```
head_var(Clause, Var): - head_literal(Clause,_,_,Vars), var_member(Var, Vars).
body_var(Clause, Var): - body_literal(Clause,_,_,Vars), var_member(Var, Vars).
% prevent singleton variables
:- clause_var(Clause, Var), #count{P,Vars: var_in_literal(Clause, P,Vars, Var)} == 1.
% head vars must appear in the body
:- head_var(Clause,Var), not body_var(Clause,Var).
%% type matching
:- var_in_literal(Clause, P, Vars1, Var), var_in_literal(Clause, Q, Vars2, Var),
    var_pos(Var, Vars1, Pos1), var_pos(Var, Vars2, Pos2),
    type(P,Pos1,Type1),type(Q,Pos2,Type2),
    Type1 != Type2.
```

Optional constraints are trivial to express

Test using Prolog

- 1. Fast
- 2. Infinite domains
- 3. Complex data structures

Could use a Datalong engine, or an ASP solver, or something else

Constrain

$$h = \{last(A,B):-head(A,B).\}$$

```
head_literal(C0,last,2,(C0V0,C0V1)),
body_literal(C0,head,2,(C0V0,C0V1)),
C0V0 != C0V1,clause_size(C0,1).
```

The above is a generalisation constraint

Popper

Algorithm 1 Popper

```
def popper(e<sup>+</sup>, e<sup>-</sup>, bk, declarations, constraints, max_literals):
 1
       num_literals = 1
 2
      while num_literals ≤ max_literals:
 3
         program = generate(declarations, constraints, num_literals)
 4
 5
         if program == 'space_exhausted':
           num_literals += 1
 6
          continue
 7
         outcome = test(e<sup>+</sup>, e<sup>-</sup>, bk, program)
 8
         if outcome == ('all_positive', 'none_negative')
 9
10
           return program
11
         constraints += learn_constraints(program, outcome)
12
       return {}
```

Uses clingo's multi-shot solving to remember state

Popper

	Progol	Metagol	ILASP	∂ILP	Popper
Hypotheses	Normal	Definite	ASP	Datalog	Definite
Language bias	Modes	Metarules	Modes	Templates	Declarations
Predicate invention	No	Yes	Partly	Partly	No
Noise handling	Yes	No	Yes	Yes	No
Recursion	Partly	Yes	Yes	Yes	Yes
Optimality	No	Yes	Yes	Yes	Yes
Infinite domains	Yes	Yes	No	No	Yes
Hypothesis constraints	No	No	No	No	Yes

No sketches / templates, such as in Metagol, DILP, Sketch, or SyGuS

Does it work?

Q1. Can constraints improve learning performance, i.e. does it outperform pure enumeration?

Q2. Can Popper outperform SOTA ILP systems?

Q3. How well does Popper scale?

Run on a MacBook pro on a single CPU with a timeout of two minutes

Primorials

Purposely simple experiment to test the claims

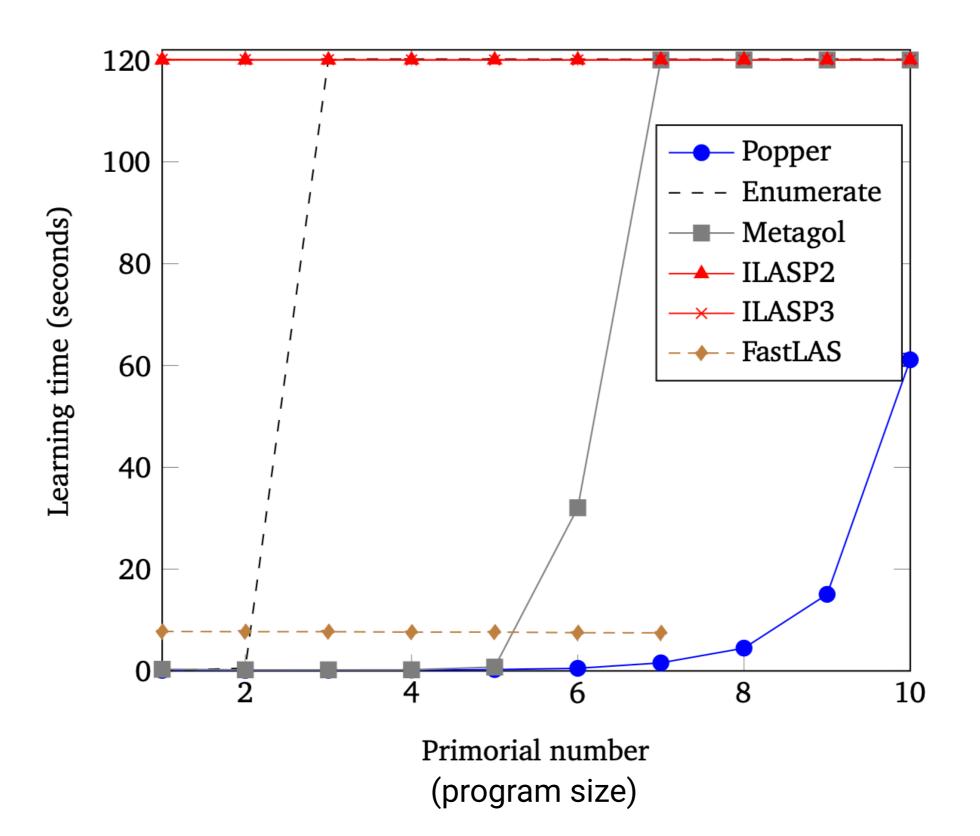
$$p_n \# \equiv \prod_{k=1}^n p_k$$

$$p_5 \# = 2 \times 3 \times 5 \times 7 \times 11 = 2310$$

primorial5(A):- div2(A),div3(A),div5(A),div7(A),div11(A).

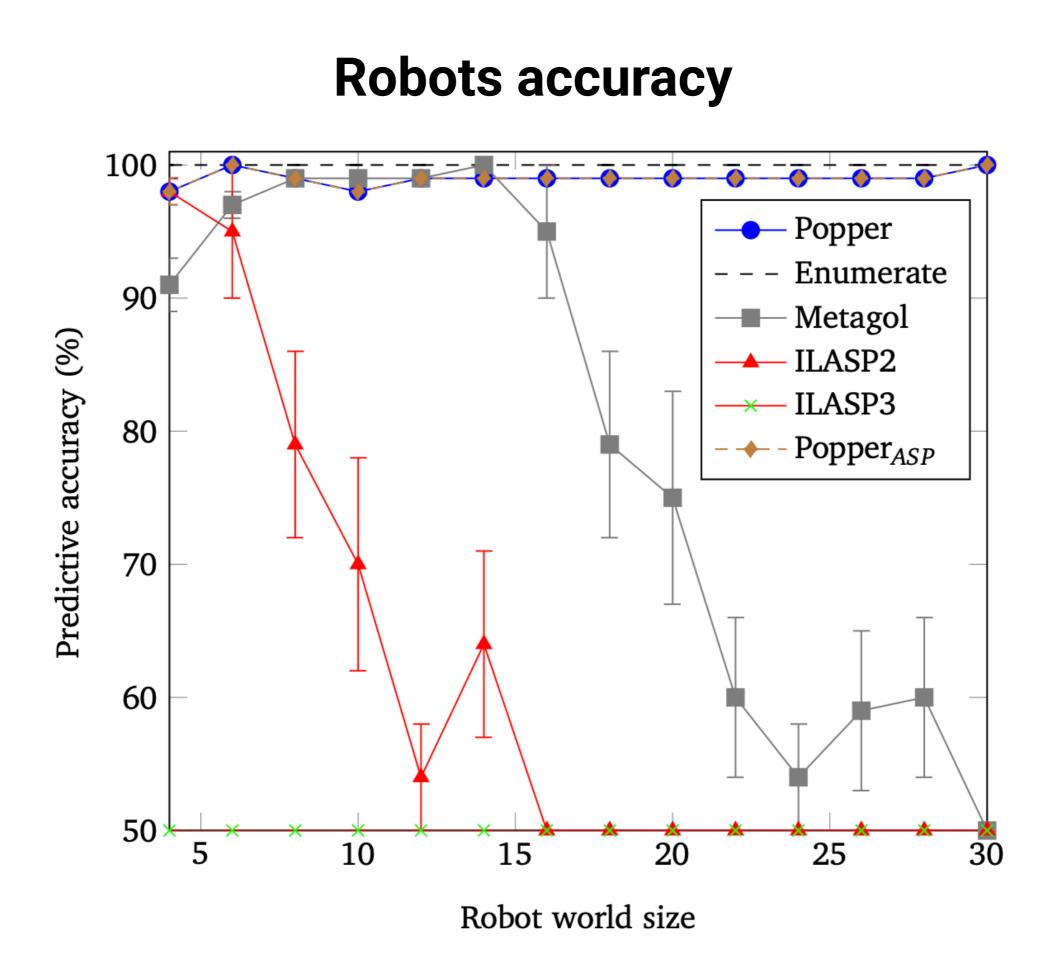
Hypothesis space contains about 10¹³ programs

Primorials

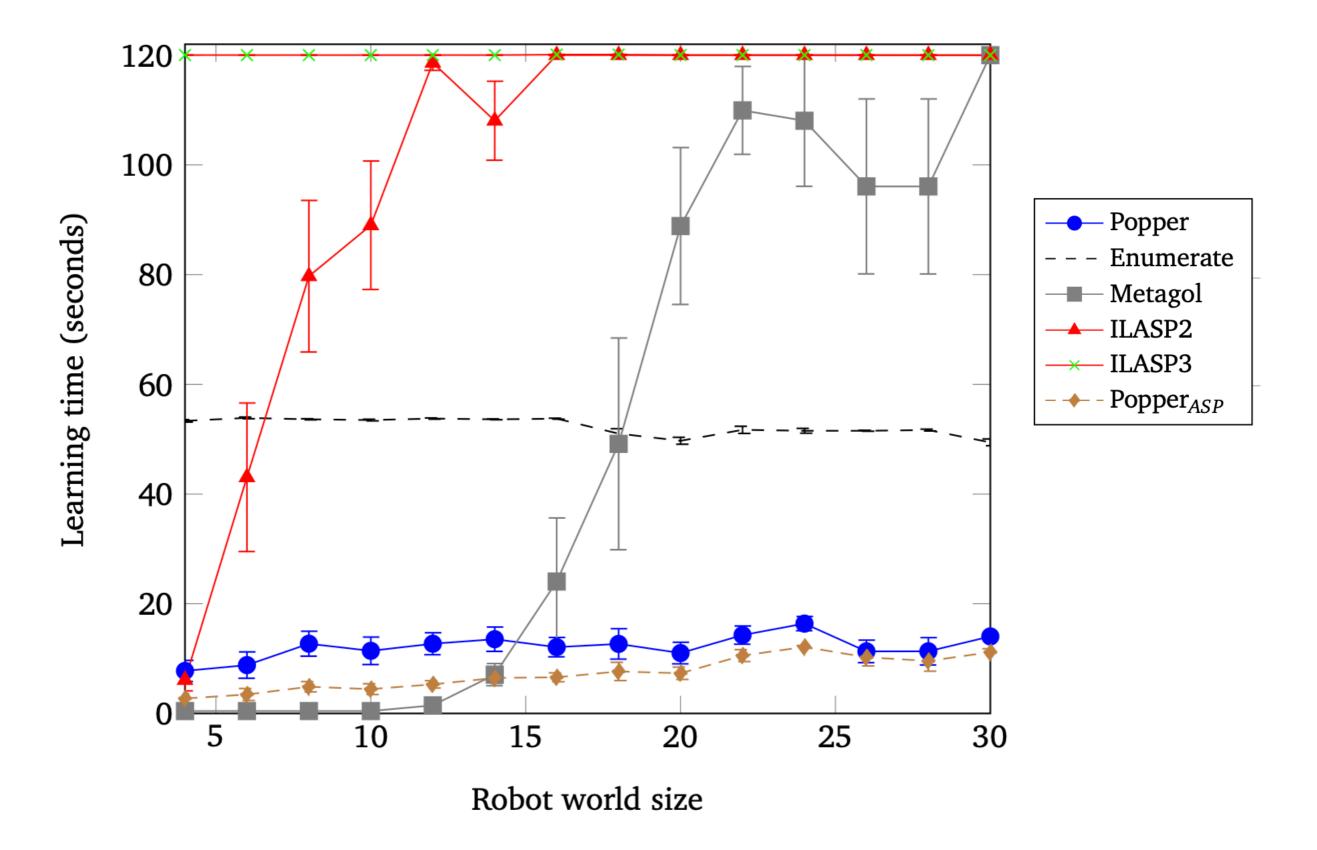


Robots

- n × n grid world.
- keep moving upwards until you cannot move upwards any more
- 5 positive and 5 negative examples



Robots learning time



Programming puzzles

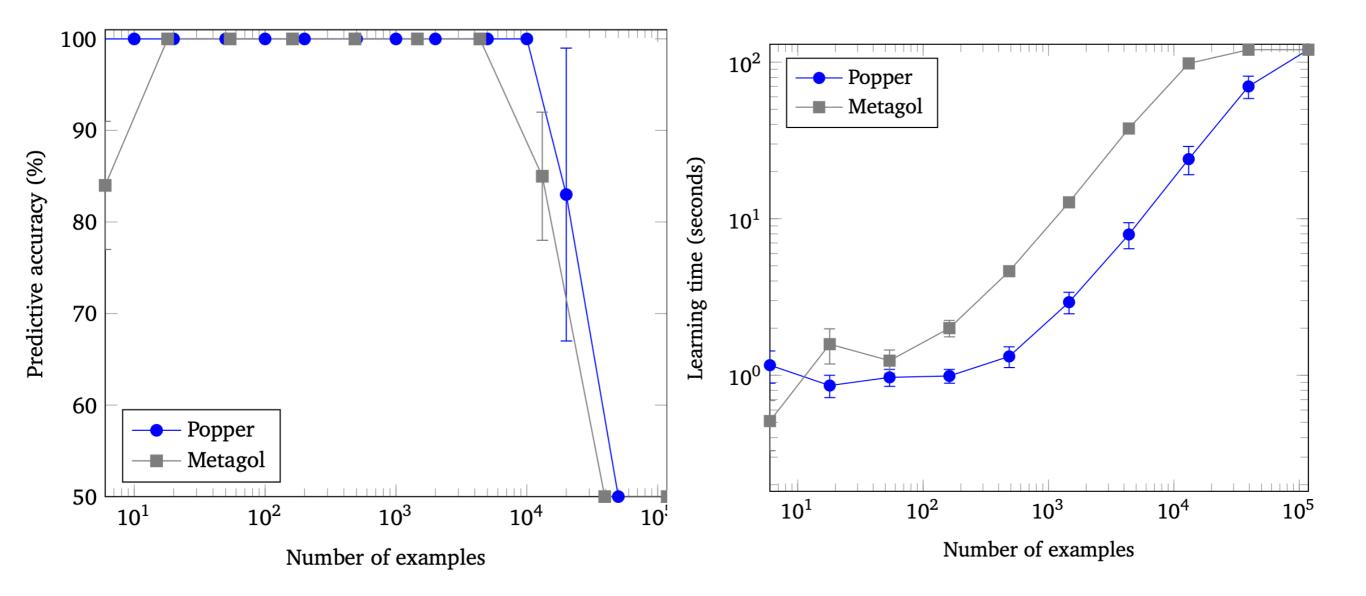
Name	Description	Example solution			
addhead	Prepend the head three times	addhead(A,B):-head(A,C),cons(C,A,D),cons(C,D,E),cons(C,E,B).			
dropk	Drop the first k elements	dropk(A,B,C):one(B),tail(A,C). dropk(A,B,C):tail(A,D),decrement(B,E),dropk(D,E,B).			
droplast	Drop the last element	droplast(A,B):-tail(A,B), tail (B,C),empty(C). droplast(A,B):-tail(A,C),droplast(C,D),head(A,E),cons(E,D,B).			
evens	Check all elements are even	evens(A):—empty(A). evens(A):—even(A),tail(A,C),evens(C).			
finddup	Find duplicate elements	finddup(A,B):-head(A,B),tail(A,C),member(B,C). finddup(A,B):-tail(A,C),finddup(C,B).			
last	Last element	last (A,B):-tail (A,C),empty(C),head (A,B). last (A,B):-tail (A,C), last (C,B).			
len	Calculate list length	len(A,B):-empty(A),zero(B). len(A,B):-tail(A,C),len(C,D),succ(D,B).			
member	Member of a list	member(A,B):—head(A,B). member(A,B):—tail(A,C),member(C,B).			
sorted	Check list is sorted	sorted(A):-empty(A). sorted(A):-head(A,B),tail(A,C),head(C,D),geq(D,B),sorted(C).			
threesame	First three elements are identical	threesame(A):-head(A,B),tail(A,C),head(C,B),tail(C,D),head(D,B).			

Programming puzzles

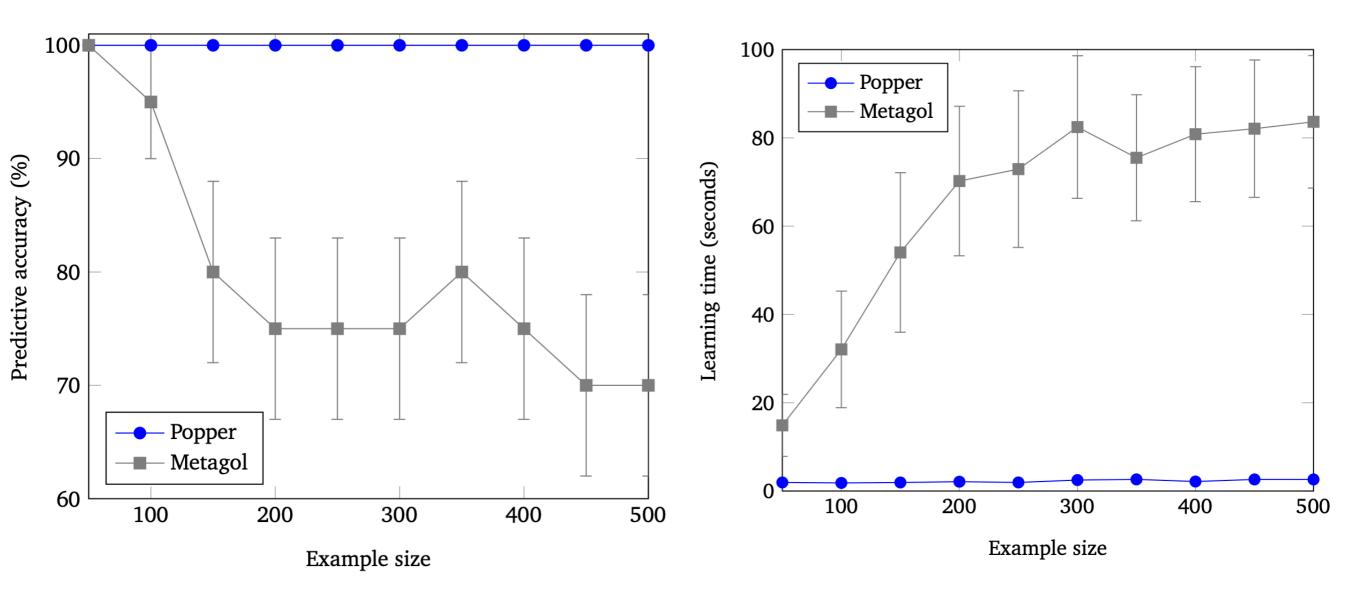
	Accuracies			Times			
Name	Popper	Enumerate	Metagol		Popper	Enumerate	Metagol
addhead	100 ± 0	100 ± 0	50 ± 0		1 ± 0	3 ± 0	120 ± 0
dropk	100 ± 0	50 ± 0	50 ± 0		1 ± 0	120 ± 0	120 ± 0
droplast	100 ± 0	50 ± 0	50 ± 0		39 ± 4	120 ± 0	120 ± 0
evens	100 ± 0	50 ± 0	55 ± 5		4 ± 0.41	120 ± 0	109 ± 11
finddup	99 ± 0	80 ± 0	100 ± 0		13 ± 2	57 ± 18	2 ± 0
last	100 ± 0	100 ± 0	100 ± 0		0.72 ± 0.11	0.55 ± 0.08	0.83 ± 0.09
len	100 ± 0	50 ± 0	50 ± 0		7 ± 1	120 ± 0	120 ± 0
member	100 ± 0	100 ± 0	75 ± 8		0.14 ± 0.01	2 ± 0.01	0.42 ± 0.01
sorted	100 ± 6	50 ± 0	50 ± 0		77 ± 7	120 ± 0	120 ± 0
threesame	99 ± 0	99 ± 0	99 ± 0		0.32 ± 0.02	0.47 ± 0.04	0.35 ± 0.06

(we have since cut Popper learning times by 1/2)

Scalability: number of examples



Scalability: size of examples



Sensitivity

- the maximum number of unique variables in a clause
- the maximum number of body literals allowed in a clause
- the maximum number of clauses allowed in a hypothesis

Bottleneck is the number of variables in a clause

Conclusions

Simplicity: LFF is a simple form of ILP that does need metarules, strong priors, etc.

Performance: Popper significantly outperforms SOTA approaches.

Feature rich: Popper supports recursion, infinite domains, and learning optimal programs.

Limitations

- Noise
- Negation
- Predicate invention

Future work

Constraints: What can we learn from failures?

Search: Proving unsatisfiability at each program size is the major bottleneck. Would it be better to try larger programs to learn more from failing?

Parallelisation: How to search in parallel?

Applications: IGGP and ARC datasets

Papers

Learning programs by learning from failures. Cropper and Morel. Under review.

Turning 30: new ideas in inductive logic programming. Cropper, Dumančić, and Muggleton. IJCAI2020.

Inductive logic programming at 30: a new introduction. Cropper and Dumančić. In preparation.