Inducing logic programs by learning from failures

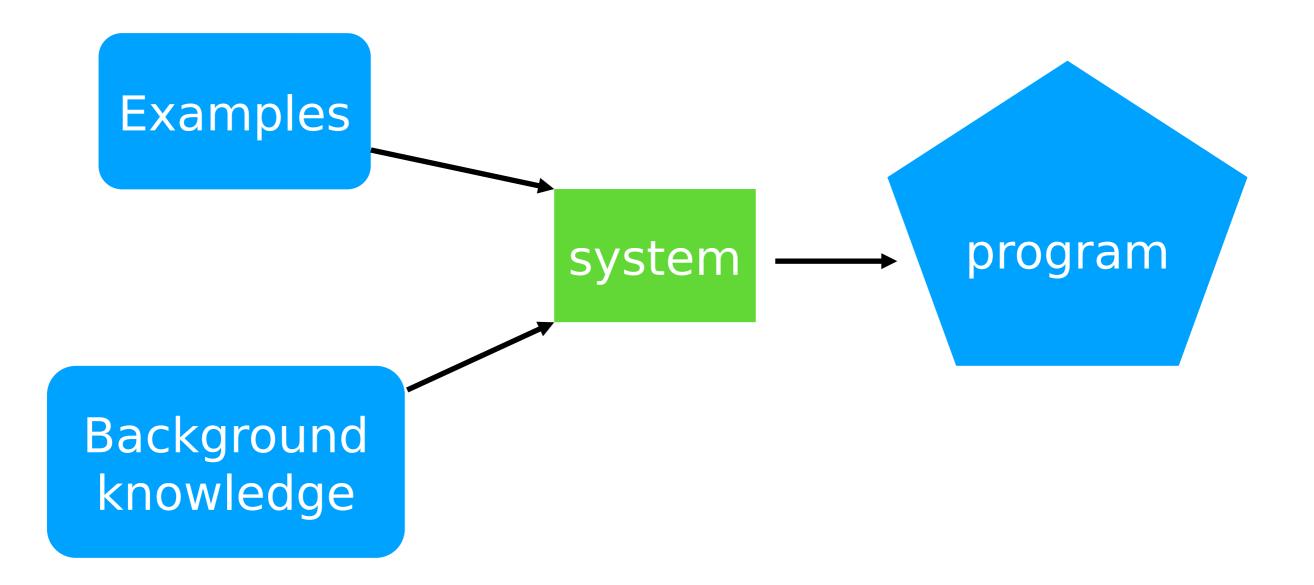
(Popper)

Rolf Morel & Andrew Cropper

What is this talk about?

- Basics of Inductive Logic Programming
- •A new very simple ILP approach
- •A new system: Popper
 - •Same features as existing systems
 - •Outperforms these systems
- Much scope for novel extensions

Program induction



Inductive Logic Programming (ILP)

A form of ML using *logic programs* to represent:

- Examples (i.e. training/test data)
- background knowledge
- hypotheses

Examples

input	output	representation
dog	g	last(dog,g)
sheep	р	last(sheep,p)
chicken	n	last(chicken,n)

Background Knowledge (BK)

head([H|_],H). tail([_|T],T). empty(A):- A=[]. double(A,B):- B is A+A.

Hypotheses

last(A,B):-tail(A,C),empty(C),head(A,B). last(A,B):-tail(A,C),last(C,B).

Limitations of current systems:

• Difficulty with recursion classical ILP, such as *Progol, Aleph*

Limitations of current systems:

- Difficulty with recursion classical ILP, such as *Progol, Aleph*
- Difficulty with infinite domains modern systems, such as *ILASP, HEXMIL*

Limitations of current systems:

- Difficulty with recursion classical ILP, such as *Progol, Aleph*
- Difficulty with infinite domains modern systems, such as *ILASP, HEXMIL*
- Difficulty with large hypothesis spaces ILASP, HEXMIL, δILP precompute entire rule space

Limitations of current systems:

- Difficulty with recursion classical ILP, such as *Progol, Aleph*
- Difficulty with infinite domains modern systems, such as *ILASP, HEXMIL*
- Difficulty with large hypothesis spaces ILASP, HEXMIL, δILP precompute entire rule space
- Needing program templates (known as metarules) Metagol, HEXMIL, δILP

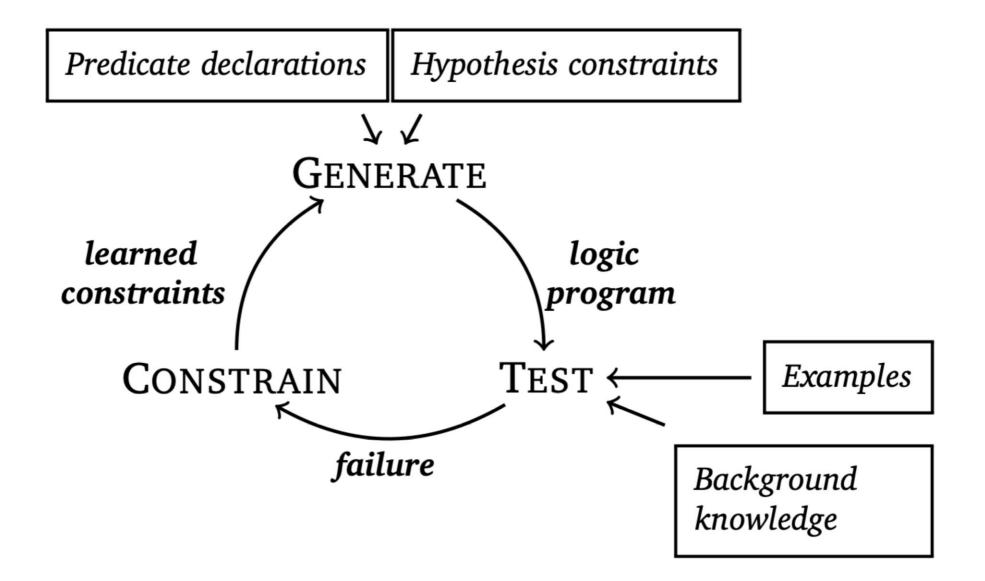
Automating Karl Popper's falsifiability:

- 1. Form a hypothesis
- 2. Empirically evaluate hypothesis
- 3. If hypothesis fails, **determine why**
- 4. Use the **explanation** to rule out other hypotheses

Automating Karl Popper's falsifiability:

- Form a hypothesis
 Generate a program
- Empirically evaluate hypothesis
 Test program on training examples
- If hypothesis fails, determine why Determine kind of program failure
- 4. Use the explanation to rule out other hypotheses Never generate programs with the same failure

- 1. Generate
- 2. Test
- 3. Constrain



input	output
laura	a
penelope	е
emma	m
james	е

input	output
laura	a
penelope	е
emma	m
james	е

$$E^+ = \left\{ \begin{array}{ll} last([l,a,u,r,a],a). \\ last([p,e,n,e,l,o,p,e],e). \end{array} \right\} \qquad E^- = \left\{ \begin{array}{ll} last([e,m,m,a],m). \\ last([j,a,m,e,s],e). \end{array} \right\}$$

Hypothesis space is much larger (and can be infinite)

$h_1 = \{last(A,B):-head(A,B).\}$

$$h_1 = \{last(A,B):-head(A,B).\}$$

input	output	entailed
laura	а	no
penelope	е	no
emma	m	no
james	е	no

$$h_1 = \{last(A,B):-head(A,B).\}$$

input	output	entailed
laura	a	no
penelope	е	no
emma	m	no
james	е	no

H1 is too specific

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):- head(A,B). \right\} \\ h_{2} = \left\{ last(A,B):- head(A,B), empty(A). \right\} \\ h_{3} = \left\{ last(A,B):- head(A,B), reverse(A,C), head(C,B). \right\} \\ h_{4} = \left\{ last(A,B):- tail(A,C), head(C,B). \right\} \\ h_{5} = \left\{ last(A,B):- reverse(A,C), head(C,B). \right\} \\ h_{6} = \left\{ \begin{array}{l} last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- reverse(A,C), head(C,B). \\ last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- tail(A,C), head(C,B). \\ last(A,B):- tail(A,C), tail(C,D), head(D,B). \\ last(A,B):- tail(A,C), reverse(C,D), head(D,B). \\ \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=head(A,B). \right\} \\ h_{2} = \left\{ last(A,B):=head(A,B), empty(A). \right\} \\ h_{3} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \right\} \\ h_{4} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ h_{5} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ h_{6} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ last(A,B):=reverse(A,C), head(C,B). \\ last(A,B):=tail(A,C), head(C,B). \\ last(A,B):=tail(A,C), head(C,B). \\ last(A,B):=tail(A,C), tail(C,D), head(D,B). \\ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \\ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \\ \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=head(A,B). \right\} \\ h_{2} = \left\{ last(A,B):=head(A,B), empty(A). \right\} \\ h_{3} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \right\} \\ h_{4} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ h_{5} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ h_{6} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ last(A,B):=reverse(A,C), head(C,B). \\ last(A,B):=tail(A,C), head(C,B). \\ last(A,B):=tail(A,C), tail(C,D), head(D,B). \\ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \\ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \\ \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):= head(A,B) \\ h_{2} = \left\{ last(A,B):= head(A,B), empty(A) \\ h_{3} = \left\{ last(A,B):= head(A,B), reverse(A,C), head(C,B) \\ h_{4} = \left\{ last(A,B):= tail(A,C), head(C,B) \\ h_{5} = \left\{ last(A,B):= reverse(A,C), head(C,B) \\ h_{5} = \left\{ last(A,B):= tail(A,C), head(C,B) \\ last(A,B):= reverse(A,C), head(C,B) \\ last(A,B):= reverse(A,C), head(C,B) \\ last(A,B):= tail(A,C), head(C,B) \\ h_{7} = \left\{ last(A,B):= tail(A,C), head(C,B) \\ last(A,B):= tail(A,C), tail(C,D), head(D,B) \\ last(A,B):= tail(A,C), reverse(C,D), head(D,B) \\ last(A,B):= tail(A,C), reverse(C,D), head(D,B) \\ \end{array} \right\}$$

$h_4 = \{last(A,B):-tail(A,C), head(C,B).\}$

$$h_4 = \{last(A,B): - tail(A,C), head(C,B).\}$$

input	output	entailed
laura	a	yes
penelope	е	yes
emma	m	yes
james	е	no

$$h_4 = \{last(A,B): - tail(A,C), head(C,B). \}$$

input	output	entailed
laura	a	yes
penelope	е	yes
emma	m	yes
james	е	no

H4 is too general

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=head(A,B). \right\} \\ \hline h_{2} = \left\{ last(A,B):=head(A,B), empty(A). \right\} \\ \hline h_{3} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \right\} \\ \hline h_{4} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ \hline h_{5} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ \hline h_{6} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ \hline h_{6} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ \hline h_{7} = \left\{ last(A,B):=tail(A,C), head(C,B). \right\} \\ \hline h_{8} = \left\{ last(A,B):=reverse(A,C), tail(C,D), head(D,B). \right\} \\ \hline h_{8} = \left\{ last(A,B):=tail(A,C), reverse(C,D), head(D,B). \right\} \\ \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \begin{array}{l} last(A,B):=head(A,B). \right\} \\ \hline h_{2} = \left\{ last(A,B):=head(A,B), empty(A). \right\} \\ \hline h_{3} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \right\} \\ \hline h_{4} = \left\{ last(A,B):=head(A,B), reverse(A,C), head(C,B). \right\} \\ \hline h_{5} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ \hline h_{6} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ \hline h_{7} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ \hline h_{7} = \left\{ last(A,B):=reverse(A,C), head(C,B). \right\} \\ \hline h_{8} = \left\{ last(A,B):=reverse(A,C), tail(C,D), head(D,B). \right\} \\ last(A,B):=reverse(A,C), tail(C,D), head(D,B). \right\} \\ \left\{ \begin{array}{l} last(A,B):=reverse(A,C), tail(C,D), head(D,B). \\ last(A,B):=reverse(C,D), head(D,B). \end{array} \right\} \\ \end{array} \right\}$$

$$\mathcal{H}_{1} = \left\{ \frac{\operatorname{last}(A,B):-\operatorname{head}(A,B).}{\operatorname{h}_{2} = \left\{ \operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{rever} \operatorname{se}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{h}_{3} = \left\{ \operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{rever} \operatorname{se}(A,C),\operatorname{head}(C,B). \right\}} \\ \frac{\operatorname{h}_{4} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{h}_{5} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}} \\ \frac{\operatorname{h}_{6} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}} \\ \operatorname{h}_{7} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}} \\ \operatorname{h}_{8} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{tail}(C,D),\operatorname{head}(D,B). \right\}} \\ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{reverse}(C,D),\operatorname{head}(D,B). \right\}}$$

$$\mathcal{H}_{1} = \left\{ \frac{\operatorname{last}(A,B):-\operatorname{head}(A,B).}{\operatorname{h}_{2} = \left\{ \operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{empty}(A). \right\}} \\ \frac{\operatorname{h}_{2} = \left\{ \operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{empty}(A). \right\}}{\operatorname{h}_{3} = \left\{ \operatorname{last}(A,B).-\operatorname{head}(A,B),\operatorname{rever} \operatorname{se}(A,C),\operatorname{head}(C,B). \right\}} \\ \frac{\operatorname{h}_{4} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{h}_{5} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}} \\ \frac{\operatorname{h}_{6} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B).} \\ \frac{\operatorname{h}_{7} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{head}(C,B). \right\}}{\operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{tail}(C,D),\operatorname{head}(D,B).} \\ \operatorname{h}_{8} = \left\{ \operatorname{last}(A,B):-\operatorname{tail}(A,C),\operatorname{reverse}(C,D),\operatorname{head}(D,B). \right\} \right\}$$

$$h_5 = \{last(A,B): - reverse(A,C), head(C,B). \}$$

$$h_5 = \{last(A,B): - reverse(A,C), head(C,B). \}$$

input	output	entailed
laura	a	yes
penelope	е	yes
emma	m	no
james	е	no

H5 does not fail, so return it

Hypothesis constraints

Generalisation

Specialisation

•Redundancy

Constraints are **sound:** they do not prune (*optimal*) solutions

Key ideas

- Refine the hypothesis space through learned hypothesis constraints
- Decompose the learning problem (i.e. do not just throw the whole problem to a SAT solver)

Learning from failures

Advantages	Disadvantages
 Optimality Completeness Recursion Infinite domains Fast Simple 	 Noise Predicate invention

Popper

- 1. Generate (ASP program)
- 2. Test (Prolog)
- 3. Constrain (ASP constraints)

Meta-level ASP program, i.e. models are programs

```
% possible clauses
allowed_clause(0..N-1):- max_clauses(N).
                                                       Declarative!
% variables
var(0..N-1):- max_vars(N).
% clauses with a head literal
clause(Clause):- head_literal(Clause,_,_).
%% head literals
0 {head_literal(Clause, P, A, Vars): head_pred(P, A), vars(A, Vars)} 1:-
    allowed_clause(Clause).
%% body literals
1 {body_literal(Clause,P,A,Vars): body_pred(P,A), vars(A,Vars)} N:-
    clause(Clause), max_body(N).
% variable combinations
vars(1,(Var1,)):- var(Var1).
vars(2,(Var1,Var2)):- var(Var1),var(Var2).
vars(3,(Var1,Var2,Var3)):- var(Var1),var(Var2),var(Var3).
```

Adding constraints eliminates models and thus programs

```
recursive:- recursive(Clause).
recursive(Clause):- head_literal(Clause,P,A,_), body_literal(Clause,P,A,_).
has_base:- clause(Clause), not recursive(Clause).
% need multiple clauses for recursion
:- recursive(_), not clause(1).
% prevent recursion without a basecase
:- recursive, not has_base.
```

Hard-coded intuitive constraints are important, but they could be learned

```
head_var(Clause, Var): - head_literal(Clause,_,_,Vars), var_member(Var, Vars).
body_var(Clause, Var): - body_literal(Clause,_,_,Vars), var_member(Var, Vars).
% prevent singleton variables
:- clause_var(Clause, Var), #count{P,Vars: var_in_literal(Clause, P,Vars, Var)} == 1.
% head vars must appear in the body
:- head_var(Clause,Var), not body_var(Clause,Var).
%% type matching
:- var_in_literal(Clause, P, Vars1, Var), var_in_literal(Clause, Q, Vars2, Var),
    var_pos(Var, Vars1, Pos1), var_pos(Var, Vars2, Pos2),
    type(P,Pos1,Type1),type(Q,Pos2,Type2),
    Type1 != Type2.
```

Domain specific declarative bias: user-provided hypothesis constraints

:- body_literal(Cl,p,2,_), body_literal(Cl,q,2,_).

Test using Prolog

1. Fast

2. Infinite domains

3. Complex data structures

Could use a Datalog engine, or an ASP solver, or something else

Constrain

$$h = \{last(A,B):-head(A,B).\}$$

```
head_literal(C0,last,2,(C0V0,C0V1)),
body_literal(C0,head,2,(C0V0,C0V1)),
C0V0 != C0V1,clause_size(C0,1).
```

The above is a generalisation constraint

Popper algorithm

Algorithm 1 Popper

```
def popper(e<sup>+</sup>, e<sup>-</sup>, bk, declarations, constraints, max_literals):
 1
       num literals = 1
 2
      while num_literals ≤ max_literals:
 3
         program = generate(declarations, constraints, num_literals)
 4
         if program == 'space_exhausted':
 5
           num_literals += 1
 6
           continue
 7
         outcome = test(e<sup>+</sup>, e<sup>-</sup>, bk, program)
 8
         if outcome == ('all_positive', 'none_negative')
 9
10
           return program
11
         constraints += learn_constraints(program, outcome)
12
       return {}
```

Uses Clingo's multi-shot solving to remember state

Popper

	Progol	Metagol	ILASP	∂ILP	Popper
Hypotheses	Normal	Definite	ASP	Datalog	Definite
Language bias	Modes	Metarules	Modes	Templates	Declarations
Predicate invention	No	Yes	Partly	Partly	No
Noise handling	Yes	No	Yes	Yes	No
Recursion	Partly	Yes	Yes	Yes	Yes
Optimality	No	Yes	Yes	Yes	Yes
Infinite domains	Yes	Yes	No	No	Yes
Hypothesis constraints	No	No	No	No	Yes

Does it work?

Q1. Can constraints improve learning performance, i.e. does it outperform pure enumeration?

Q2. Can Popper outperform SOTA ILP systems?

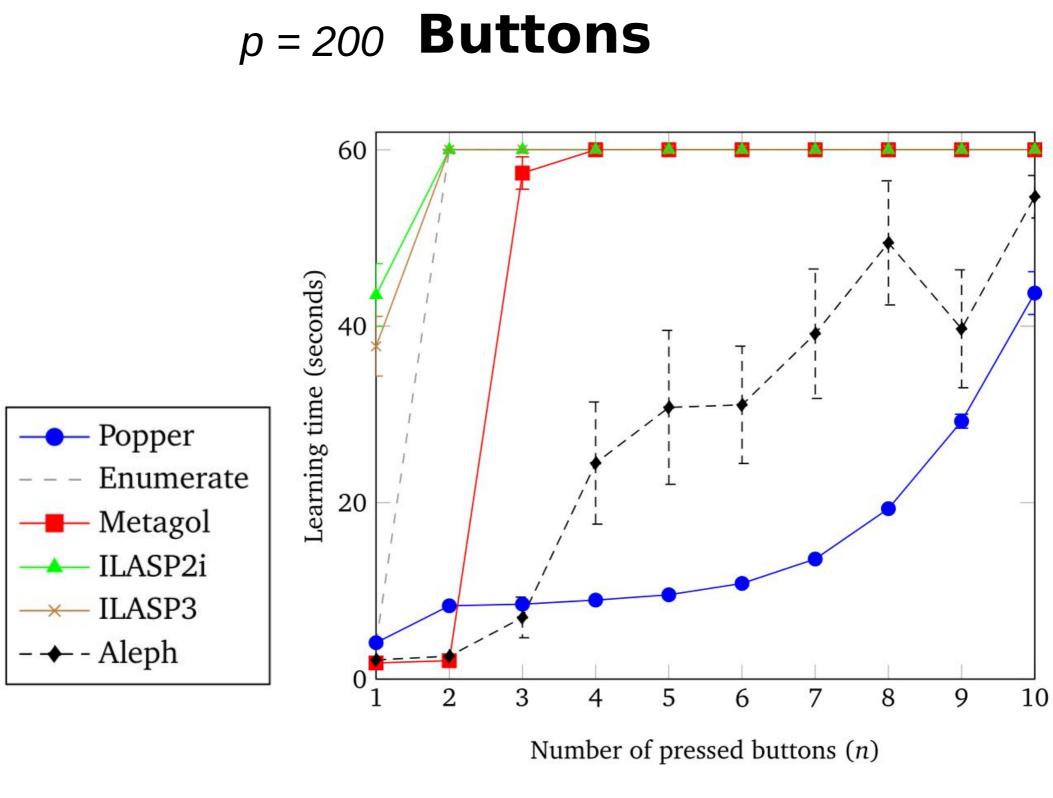
Buttons

Purposely simple experiment to test the claims

Given p buttons, learn which n need to be pressed

win(A):- button6(A), button4(A), button7(A)

Hypothesis space for p = 200 contains about 10¹⁶ programs



(x-axis is program size)

Programming puzzles

Name	Description	Example solution	
addhead	Prepend the head three times	addhead(A,B):-head(A,C),cons(C,A,D),cons(C,D,E),cons(C,E,B).	
dropk	Drop the first k elements	dropk(A,B,C):—one(B),tail(A,C). dropk(A,B,C):—tail(A,D),decrement(B,E),dropk(D,E,B).	
droplast	Drop the last element	droplast(A,B):-tail(A,B), tail (B,C),empty(C). droplast(A,B):-tail(A,C),droplast(C,D),head(A,E),cons(E,D,B).	
evens	Check all elements are even	evens(A):—empty(A). evens(A):—even(A),tail(A,C),evens(C).	
finddup	Find duplicate elements	finddup(A,B):—head(A,B),tail(A,C),member(B,C). finddup(A,B):—tail(A,C),finddup(C,B).	
last	Last element	last (A,B):-tail(A,C),empty(C),head(A,B). last (A,B):-tail(A,C), last (C,B).	
len	Calculate list length	$ \begin{array}{ llllllllllllllllllllllllllllllllllll$	
member	Member of a list	member(A,B):-head(A,B). member(A,B):-tail(A,C),member(C,B).	
sorted	Check list is sorted	sorted(A):-empty(A). sorted(A):-head(A,B),tail(A,C),head(C,D),geq(D,B),sorted(C).	
threesame	First three elements are identical	threesame(A):-head(A,B),tail(A,C),head(C,B),tail(C,D),head(D,B)	

Programming puzzles (Accuracy)

Name	Popper	Enumerate	Metagol	Aleph
addhead	100 ± 0	100 ± 0	n/a	90 ± 10
dropk	100 ± 0	50 ± 0	n/a	50 ± 0
droplast	100 ± 0	50 ± 0	n/a	50 ± 0
evens	100 ± 0	100 ± 0	50 ± 0	50 ± 0
finddup	98 ± 0	50 ± 0	100 ± 0	50 ± 0
last	100 ± 0	50 ± 0	100 ± 0	50 ± 0
len	100 ± 0	50 ± 0	50 ± 0	50 ± 0
member	100 ± 0	100 ± 0	100 ± 0	50 ± 0
sorted	100 ± 0	50 ± 0	50 ± 0	68 ± 2
threesame	99 ± 0	99 ± 0	99 ± 0	99 ± 0

Programming puzzles (Learning times)

Name	Popper	Enumerate	Metagol	Aleph
addhead	0.5 ± 0	2 ± 0	n/a	103 ± 49
dropk	0.8 ± 0	300 ± 0	n/a	3 ± 0.2
droplast	3 ± 0.1	300 ± 0	n/a	300 ± 0
evens	4 ± 0.1	159 ± 0.1	300 ± 0	1 ± 0
finddup	36 ± 2	300 ± 0	2 ± 0.5	1.0 ± 0.1
last	2 ± 0.1	300 ± 0	0.7 ± 0.2	1 ± 0.1
len	12 ± 0.3	300 ± 0	300 ± 0	1 ± 0
member	0.4 ± 0.1	7 ± 0	0.3 ± 0	0.9 ± 0.1
sorted	23 ± 1	300 ± 0	300 ± 0	0.8 ± 0
threesame	0.2 ± 0.1	0.4 ± 0.2	0.9 ± 0.3	0.5 ± 0

Future work

- Sub-programs as failure explanation
- Completeness of constraints
- Parallel Popper
- •More "expressive" hypotheses (e.g. ASP)

Conclusions

Simplicity: LFF is a simple form of ILP

Performance:

Popper can outperform S.O.T.A. approaches.

Feature rich:

Popper supports recursion, infinite domains, and learning optimal programs.

Paper: *Learning programs by learning from failures*. Cropper and Morel. Machine Learning, 2021.