
Inducing logic programs by 
learning from failures

(Popper)

Rolf Morel & Andrew Cropper



What is this talk about?

Basics of Inductive Logic Programming

A new very simple ILP approach

A new system: Popper
Same features as existing systems
Outperforms these systems

Much scope for novel extensions
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A form of ML using
logic programs to represent:

Inductive Logic Programming (ILP)

 Examples (i.e. training/test data)

 background knowledge

 hypotheses



Examples

input output

dog g

sheep p

chicken n

representation

last(dog,g)

last(sheep,p)

last(chicken,n)



Background Knowledge (BK)

head([H|_],H).
tail([_|T],T).
empty(A):- A=[].
double(A,B):- B is A+A.



Hypotheses

last(A,B):-tail(A,C),empty(C),head(A,B).
last(A,B):-tail(A,C),last(C,B).
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Motivation

Limitations of current systems:

● Difficulty with recursion
classical ILP, such as Progol, Aleph

● Difficulty with infinite domains
modern systems, such as ILASP, HEXMIL

● Difficulty with large hypothesis spaces
ILASP, HEXMIL, δILP precompute entire rule space

● Needing program templates (known as metarules)
Metagol, HEXMIL, δILP
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Learning from failures

Automating Karl Popper’s falsifiability:

1. Form a hypothesis
Generate a program

2. Empirically evaluate hypothesis
Test program on training examples

3. If hypothesis fails, determine why
Determine kind of program failure

4. Use the explanation to rule out other hypotheses
Never generate programs with the same failure



Learning from failures

1. Generate

2. Test

3. Constrain





input output

laura a

penelope e

emma m

james e







































Constraints are sound:
 they do not prune (optimal) solutions

Hypothesis constraints

Generalisation

Specialisation

Redundancy



1. Refine the hypothesis space through 
learned hypothesis constraints

2. Decompose the learning problem (i.e. 
do not just throw the whole problem to 
a SAT solver)

Key ideas



Advantages Disadvantages

 Optimality
 Completeness
 Recursion
 Infinite domains
 Fast
 Simple

 Noise
 Predicate invention

Learning from failures



1. Generate (ASP program)

2. Test (Prolog)

3. Constrain (ASP constraints)

Popper









Generate

:- body_literal(Cl,p,2,_), 
   body_literal(Cl,q,2,_).

Domain specific declarative bias:
user-provided hypothesis constraints



1. Fast

2. Infinite domains

3. Complex data structures

Test using Prolog

Could use a Datalog engine, or an ASP solver, or something else









Q1. Can constraints improve learning 
performance, i.e. does it outperform pure 
enumeration?

Q2. Can Popper outperform SOTA ILP systems?

Does it work?



Buttons

Hypothesis space for p = 200 contains
about 1016 programs

Purposely simple experiment to test the claims

Given p buttons, learn which n need to be pressed



Buttons

(x-axis is program size)

p = 200





Programming puzzles
(Accuracy)



Programming puzzles
(Learning times)



Future work

●Sub-programs as failure explanation

●Completeness of constraints

●Parallel Popper

●More “expressive” hypotheses (e.g. ASP)



Conclusions

Simplicity: LFF is a simple form of ILP

Performance: 
Popper can outperform S.O.T.A. approaches.

Feature rich: 
Popper supports recursion, infinite domains, 
and learning optimal programs.

Paper: Learning programs by learning from failures. 
Cropper and Morel. Machine Learning, 2021.
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