
Inducing logic programs by
learning from failures

(Popper)

Rolf Morel & Andrew Cropper

What is this talk about?

Basics of Inductive Logic Programming

A new very simple ILP approach

A new system: Popper
Same features as existing systems
Outperforms these systems

Much scope for novel extensions

Examples

Background
knowledge

system program

Program induction

A form of ML using
logic programs to represent:

Inductive Logic Programming (ILP)

 Examples (i.e. training/test data)

 background knowledge

 hypotheses

Examples

input output

dog g

sheep p

chicken n

representation

last(dog,g)

last(sheep,p)

last(chicken,n)

Background Knowledge (BK)

head([H|_],H).
tail([_|T],T).
empty(A):- A=[].
double(A,B):- B is A+A.

Hypotheses

last(A,B):-tail(A,C),empty(C),head(A,B).
last(A,B):-tail(A,C),last(C,B).

Motivation

Limitations of current systems:

● Difficulty with recursion
classical ILP, such as Progol, Aleph

Motivation

Limitations of current systems:

● Difficulty with recursion
classical ILP, such as Progol, Aleph

● Difficulty with infinite domains
modern systems, such as ILASP, HEXMIL

Motivation

Limitations of current systems:

● Difficulty with recursion
classical ILP, such as Progol, Aleph

● Difficulty with infinite domains
modern systems, such as ILASP, HEXMIL

● Difficulty with large hypothesis spaces
ILASP, HEXMIL, δILP precompute entire rule space

Motivation

Limitations of current systems:

● Difficulty with recursion
classical ILP, such as Progol, Aleph

● Difficulty with infinite domains
modern systems, such as ILASP, HEXMIL

● Difficulty with large hypothesis spaces
ILASP, HEXMIL, δILP precompute entire rule space

● Needing program templates (known as metarules)
Metagol, HEXMIL, δILP

Learning from failures

Automating Karl Popper’s falsifiability:

1. Form a hypothesis

2. Empirically evaluate hypothesis

3. If hypothesis fails, determine why

4. Use the explanation to rule out other hypotheses

Learning from failures

Automating Karl Popper’s falsifiability:

1. Form a hypothesis
Generate a program

2. Empirically evaluate hypothesis
Test program on training examples

3. If hypothesis fails, determine why
Determine kind of program failure

4. Use the explanation to rule out other hypotheses
Never generate programs with the same failure

Learning from failures

1. Generate

2. Test

3. Constrain

input output

laura a

penelope e

emma m

james e

Constraints are sound:
 they do not prune (optimal) solutions

Hypothesis constraints

Generalisation

Specialisation

Redundancy

1. Refine the hypothesis space through
learned hypothesis constraints

2. Decompose the learning problem (i.e.
do not just throw the whole problem to
a SAT solver)

Key ideas

Advantages Disadvantages

 Optimality
 Completeness
 Recursion
 Infinite domains
 Fast
 Simple

 Noise
 Predicate invention

Learning from failures

1. Generate (ASP program)

2. Test (Prolog)

3. Constrain (ASP constraints)

Popper

Generate

:- body_literal(Cl,p,2,_),
 body_literal(Cl,q,2,_).

Domain specific declarative bias:
user-provided hypothesis constraints

1. Fast

2. Infinite domains

3. Complex data structures

Test using Prolog

Could use a Datalog engine, or an ASP solver, or something else

Q1. Can constraints improve learning
performance, i.e. does it outperform pure
enumeration?

Q2. Can Popper outperform SOTA ILP systems?

Does it work?

Buttons

Hypothesis space for p = 200 contains
about 1016 programs

Purposely simple experiment to test the claims

Given p buttons, learn which n need to be pressed

Buttons

(x-axis is program size)

p = 200

Programming puzzles
(Accuracy)

Programming puzzles
(Learning times)

Future work

●Sub-programs as failure explanation

●Completeness of constraints

●Parallel Popper

●More “expressive” hypotheses (e.g. ASP)

Conclusions

Simplicity: LFF is a simple form of ILP

Performance:
Popper can outperform S.O.T.A. approaches.

Feature rich:
Popper supports recursion, infinite domains,
and learning optimal programs.

Paper: Learning programs by learning from failures.
Cropper and Morel. Machine Learning, 2021.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 58
	Slide 59
	Slide 60
	Slide 64
	Slide 65

