Typed meta-interpretive learning
of logic programs

Rolf Morel, Andrew Cropper, and Luke Ong
University of Oxford

JELIA 2019

Setting the scene

» Inductive Logic Programming

droplasts (["jelia","2019"],["jeli","201"]).
droplasts (["rende","cyprus","madeira"],
["rend","cypru","madeir"]).

» Meta-Interpretive Learning (MIL) framework

» Provide BK predicates such as map/3, reverse/2, and tail /2,
» Provide metarules such as P(A, B) + Q(A, C),R(C, B)

P Logic programs are typically untyped

droplasts(A,B) :- map(A,C,droplasts_1).
droplasts_1(A,B) :- reverse(A,C),droplasts_2(C,B).
droplasts_2(A,B) :- tail(A,C),reverse(C,B).

Contributions

Prune hypothesis search space by type checking

Extend MIL to support polymorphic types

Hypothesis space reduction by a cubic factor

>
>
» Inference of polymorphic types for invented predicates
» Implementations in Prolog and ASP

>

Experimental reduction in learning times

Terms and types

Notation means “has type”
Ground terms have types:
» a: char » [1,2]: list(int)
Non-ground terms have types:
> [H|T] : list(S) > A: T
Atoms/predicates have types:
» succ(A, B) : (int, int) > P(A/B):(U,V)

> head([H|], H) : (list(T), T)
> map(A, B, F) : (list(U), list(V), (U, V))

Typed (meta-)rules and typed logic programs

Chain rule
> P(A,B) «+ Q(A,C),R(C,B)
becomes
> P(A,B):(Ta, Thb) < Q(A, C):(Ta, Tc),R(C,B):(Tc, Tb)

A metarule (resp. a logic program) is typed if all atoms are typed.

The “" notation is sugar:
> P(A1,...,An) : (11,...,7n)
can be represented as
> P(71,...,Tn,A1,...,Ap)

Type definition and type terms

Variables, constant and function symbols:
> Set of type variables V;
» T, C C of base types (e.g. int)
» T. C F of polymorphic type constructors (e.g. list/1)

The set T of types has members such as:
» Data types: bool, list(int), record(int, list(T))
» Predicate types: (int,int), (list(T), T)
» Higher-order polymorhic types: (list(S), list(T),(S, T))

Typed MIL problem

Typed MIL input:
» BK =BcUM
» B¢ is a set of typed Horn clauses
> M is a set of typed metarules

» Examples ET and E~ are typed ground atoms

Typed MIL problem:
Find a typed logic program hypothesis H such that

» HUBc = ET
| 2 HUBcl#E_

Hypothesis space reduction

(Def) Type relevancy
A predicate symbol is type relevant if it there exists a hypothesis
that is type consistent with the BK and the examples.

(Example) Given BK:

map (A,B,F):(1list(U),1list (V) ,(U,V))
reverse (A,B) : (1ist (T),1list (T))
tail (A,B) :(1list(T),list (T))

succ (A,B) : (int, int)

Then there is no type consistent hypothesis that uses succ/2 for:

droplasts (["jelia","2019"],["jeli","201"]):
(list(list(char)),list(list(char))).

Hypothesis space reduction (in H3)

For simplicity consider the hypothesis space ’H%
» At most 2 literals in clause bodies (arities < 2)
» Hypothesis space size < (mp3)"
> mis #metarules, p is #predicate symbols, n is #clauses

(Def) Relevant ratio

Given p' type relevant predicate symbols, the relevant ratio is
/

r=p'/p.

(Thm) Hypothesis space reduction
Given p predicate symbols, and a relevant ratio r, typing reduces
the MIL hypothesis space by a factor of r3".

Replace p with rp above to obtain size < r37(mp3)".

O

Implementations

Prolog implementation Metagol t:

» Supports higher-order predicates and inventions
» Atoms annotated with derivation types
> eg. P([1,2,3],3):(list(int), int)
» Types that are accurate for argument values
P> Atoms additionally annotated with general types
> eg. P([1,2,3],3):(list(int), int):(list(T), int)
» Types that are accurate for how a predicate may be used
» least general generalizations of derivation types

» Type checking is just unification

» head(A, B):(list(T), T) would be tried for P, but
tail(A, B):(list(T), list(T)) would not.

Implementations

ASP implementation HEXMIL 7:
» Based on HEXMIL, an Answer Set Programming MIL
encoding
» Each atom is given additional arguments to represent the

types
> E.g., was binary bg(succ,A,B) :-B=A+1,state(A).

» binary bg(succ, (int,int),A,B) :-B=A+1,state(A,int).
» Extension of HEXMIL encoding for higher-order predicates

Experiment: droplasts/2

Examples:

droplasts ([" jelia","2019"]1,["jeldi","201"]1).
droplasts (["rende","cyprus","madeira"],
["rend" ,"cypru","madeir"]).

Target program:

droplasts(A,B) :— map(A,C,droplasts_1).
droplasts_1(A,B) :— reverse(A,C),droplasts_2(C,B).
droplasts_2(A,B) :— tail(A,C),reverse(C,B).

Experiment: droplasts/2

Target program with types:

droplasts (A,B):(list(list(T)),list(list(T))):—

map(A,C, droplasts_1)
(list(list(T)), list(list(T)

droplasts_1(A,B):(list(T),list(T))
reverse (A, C):(list(T),list(T)),
droplasts_2(C,B):(list(T),list(T)).

droplasts_2 (A,B):(list(T),list(T)):—
tail (A,C):(list(T),list(T)),
reverse (C,B):(list(T),list(T)).

) (list (T), list(T))).

Experiment: droplasts/2

Sample small examples at random.

Sample BK predicates from:

tail(A,B):(list(T),list(T)). succ(A,B):(int,int).
map(A,B,F):(list(T),list(S),(S,T)). last(A,B):(list(T),T).
reverse(A,B):(list(T),list(T)). min_list(A,B):(list(int),int).
sumlist(A,B):(list(int),int). pred(A,B):(int,int).
head(A,B): (list(T),T). max_list(A,B):(list(int),int).

Experiment: vary the number of background predicates

Always include map/3, reverse/2, and tail /2

Experiment: droplasts/2

Results

Learning time (seconds)

1

—e— Metagol,
—a— Metagol

0.8
0.6
0.4
0.2
0 -85 2000000009009
5 10 15 20 25

additional background predicates

Prolog

Learning time (seconds)

200

-
u
=]

—
o
S

v
=]

—e— HEXMIL;
—=— HEXMIL

e

0 2 4 6 8

additional background predicates

ASP

10

Future work

» Decidability proof:
» Types involve functional symbols
» Still can argue for finite number of types
» First-order is clear, higher-order is not

> More complex types:

» Union types
> Refinement types (types restricted by propositions):

> Attempted with SMT solving
» Pure prolog shows some advantage

P> Type invention

