
Typed meta-interpretive learning
of logic programs

Rolf Morel, Andrew Cropper, and Luke Ong

University of Oxford

JELIA 2019

Setting the scene

I Inductive Logic Programming

droplasts ([" jelia " ,"2019"] ,[" jeli " ,"201"]).

droplasts ([" rende","cyprus","madeira"],

["rend","cypru","madeir "]).

I Meta-Interpretive Learning (MIL) framework
I Provide BK predicates such as map/3, reverse/2, and tail/2,
I Provide metarules such as P(A,B)← Q(A,C),R(C ,B)

I Logic programs are typically untyped

droplasts(A,B) :- map(A,C,droplasts_1).

droplasts_1(A,B) :- reverse(A,C),droplasts_2(C,B).

droplasts_2(A,B) :- tail(A,C),reverse(C,B).

Contributions

Prune hypothesis search space by type checking

I Extend MIL to support polymorphic types

I Hypothesis space reduction by a cubic factor

I Inference of polymorphic types for invented predicates

I Implementations in Prolog and ASP

I Experimental reduction in learning times

Terms and types

Notation “:” means “has type”

Ground terms have types:

I a : char I [1, 2] : list(int)

Non-ground terms have types:

I [H|T] : list(S) I A : T

Atoms/predicates have types:

I succ(A,B) : (int, int) I P(A,B) : (U,V)

I head([H|],H) : (list(T),T)

I map(A,B,F) : (list(U), list(V), (U,V))

Typed (meta-)rules and typed logic programs

Chain rule

I P(A,B)← Q(A,C),R(C ,B)

becomes

I P(A,B):(Ta,Tb)← Q(A,C):(Ta,Tc),R(C ,B):(Tc ,Tb)

A metarule (resp. a logic program) is typed if all atoms are typed.

The “:” notation is sugar:

I P(A1, . . . ,An) : (τ1, . . . , τn)

can be represented as

I P(τ1, . . . , τn,A1, . . . ,An)

Type definition and type terms

Variables, constant and function symbols:

I Set of type variables Vt

I Tb ⊆ C of base types (e.g. int)

I Tc ⊆ F of polymorphic type constructors (e.g. list/1)

The set T of types has members such as:

I Data types: bool , list(int), record(int, list(T))

I Predicate types: (int, int), (list(T),T)

I Higher-order polymorhic types: (list(S), list(T), (S ,T))

Typed MIL problem

Typed MIL input:
I BK = BC ∪M

I BC is a set of typed Horn clauses
I M is a set of typed metarules

I Examples E+ and E− are typed ground atoms

Typed MIL problem:
Find a typed logic program hypothesis H such that

I H ∪ BC |= E+

I H ∪ BC 6|= E−

Hypothesis space reduction

(Def) Type relevancy
A predicate symbol is type relevant if it there exists a hypothesis
that is type consistent with the BK and the examples.

(Example) Given BK:

map(A,B,F):(list(U),list(V),(U,V))

reverse(A,B):(list(T),list(T))

tail(A,B):(list(T),list(T))

succ(A,B):(int ,int)

Then there is no type consistent hypothesis that uses succ/2 for:

droplasts ([" jelia " ,"2019"] ,[" jeli " ,"201"]):

(list(list(char)),list(list(char))).

Hypothesis space reduction (in H2
2)

For simplicity consider the hypothesis space H2
2

I At most 2 literals in clause bodies (arities ≤ 2)
I Hypothesis space size ≤ (mp3)n

I m is #metarules, p is #predicate symbols, n is #clauses

(Def) Relevant ratio
Given p′ type relevant predicate symbols, the relevant ratio is
r = p′/p.

(Thm) Hypothesis space reduction
Given p predicate symbols, and a relevant ratio r , typing reduces
the MIL hypothesis space by a factor of r3n.

Replace p with rp above to obtain size ≤ r3n(mp3)n.

Implementations

Prolog implementation MetagolT :

I Supports higher-order predicates and inventions
I Atoms annotated with derivation types

I e.g. P([1, 2, 3], 3):(list(int), int)
I Types that are accurate for argument values

I Atoms additionally annotated with general types
I e.g. P([1, 2, 3], 3):(list(int), int):(list(T), int)
I Types that are accurate for how a predicate may be used
I least general generalizations of derivation types

I Type checking is just unification
I head(A,B):(list(T),T) would be tried for P, but

tail(A,B):(list(T), list(T)) would not.

Implementations

ASP implementation HEXMILT :

I Based on HEXMIL, an Answer Set Programming MIL
encoding

I Each atom is given additional arguments to represent the
types
I E.g., was binary bg(succ,A,B):-B=A+1,state(A).
I binary bg(succ,(int,int),A,B):-B=A+1,state(A,int).

I Extension of HEXMIL encoding for higher-order predicates

Experiment: droplasts/2

Examples:

droplasts ([" jelia " ,"2019"] ,[" jeli " ,"201"]).

droplasts ([" rende","cyprus","madeira"],

["rend","cypru","madeir "]).

Target program:

d r o p l a s t s (A,B) :− map(A,C , d r o p l a s t s 1) .
d r o p l a s t s 1 (A,B) :− r e v e r s e (A,C) , d r o p l a s t s 2 (C ,B) .
d r o p l a s t s 2 (A,B) :− t a i l (A,C) , r e v e r s e (C ,B) .

Experiment: droplasts/2

Target program with types:

d r o p l a s t s (A,B) : (l i s t (l i s t (T)) , l i s t (l i s t (T))) :−
map(A,C , d r o p l a s t s 1)

: (l i s t (l i s t (T)) , l i s t (l i s t (T)) , (l i s t (T) , l i s t (T))) .
d r o p l a s t s 1 (A,B) : (l i s t (T) , l i s t (T)) :−

r e v e r s e (A,C) : (l i s t (T) , l i s t (T)) ,
d r o p l a s t s 2 (C ,B) : (l i s t (T) , l i s t (T)) .

d r o p l a s t s 2 (A,B) : (l i s t (T) , l i s t (T)) :−
t a i l (A,C) : (l i s t (T) , l i s t (T)) ,
r e v e r s e (C ,B) : (l i s t (T) , l i s t (T)) .

Experiment: droplasts/2

Sample small examples at random.

Sample BK predicates from:

tail(A,B):(list(T),list(T)). succ(A,B):(int,int).
map(A,B,F):(list(T),list(S),(S,T)). last(A,B):(list(T),T).
reverse(A,B):(list(T),list(T)). min list(A,B):(list(int),int).
sumlist(A,B):(list(int),int). pred(A,B):(int,int).
head(A,B):(list(T),T). max list(A,B):(list(int),int).

Experiment: vary the number of background predicates

Always include map/3, reverse/2, and tail/2

Experiment: droplasts/2

Results

Prolog ASP

Future work

I Decidability proof:
I Types involve functional symbols
I Still can argue for finite number of types
I First-order is clear, higher-order is not

I More complex types:
I Union types
I Refinement types (types restricted by propositions):

I Attempted with SMT solving
I Pure prolog shows some advantage

I Type invention

