
Identifying and inferring objects from textual
descriptions of scenes from books

Andrew Cropper

Department of Computing, Imperial College London
a.cropper13@imperial.ac.uk

Abstract
Fiction authors rarely provide detailed descriptions of scenes, preferring the reader to fill in the
details using their imagination. Therefore, to perform detailed text-to-scene conversion from
books, we need to not only identify explicit objects but also infer implicit objects. In this paper,
we describe an approach to inferring objects using Wikipedia and WordNet. In our experiments,
we are able to infer implicit objects such as monitor and computer by identifying explicit objects
such as keyboard.

1998 ACM Subject Classification I.2.10 Vision and Scene Understanding, I.2.6 Learning, I.2.7
Natural Language Processing

Keywords and phrases Text-to-Scene Conversion, Natural Language Processing, Artificial Intel-
ligence

Digital Object Identifier 10.4230/OASIcs.ICCSW.2014.19

1 Introduction

Since the release of Toy Story in 1995, animation films have become increasingly popular
[21]. As animators strive for photorealistic animation, budgets are spiralling [16]. Similarly,
with next-generation consoles pushing the boundaries of computer graphics, expectations for
visually aesthetic video games are increasing. Consequently, to generate more detailed content,
games companies have to recruit more game artists, increasing the cost of development [17].

A text-to-scene conversion system (TTSCS) generates a 2D or 3D scene from a textual
description provided by the user. For example, figure 1 shows the scene generated by
Wordseye [7], a TTSCS described in section 2, for the text “The lawn mower is 5 feet tall.
John pushes the lawn mower. The cat is 5 feet behind John. The cat is 10 feet tall”. TTSCSs
have the potential to reduce budgets and production times for animation films and video
games by automatically generating scenes from user-provided scripts.

In this paper, we focus on textual descriptions of scenes from fiction books, where authors
rarely provide detailed descriptions, preferring the reader to fill in the details using their
imagination. Therefore, to perform detailed text-to-scene conversion from fiction books, we
need to not only identify explicit objects but also infer implicit objects. For example, for
the extract “I was going to email Van and Jolu to tell them about the hassles with the cops,
but as I put my fingers to the keyboard, I stopped again.”, a TTSCS needs to identify the
keyboard and then infer that a computer is a likely accompaniment. In the following sections,
we describe an approach using Wikipedia and WordNet.

© Andrew Cropper;
licensed under Creative Commons License CC-BY

Imperial College Computing Student Workshop (ICCSW’14).
Editors: Rumyana Neykova and Nicholas Ng; pp. 19–26

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2014.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/
Andrew Cropper

20 Identifying and inferring objects from textual descriptions of scenes from books

 8

compared to earlier systems, which were all heavily pre-defined and had a

limited vocabulary of concepts.

WordsEye works by receiving an input from a user, tagging the input using a

part-of-speech tagger and a statistical parser. The resulting parse tree is

converted to a dependency representation, which is semantically interpreted and

converted into a semantic representation. WordsEye relies on a number of

external resources to function, such as a part-of-speech tagger and WordNet, a

lexical-semantic database of English words, used to semantically interpret

nouns, both to derive appropriate sets of objects and in subsequent reference

resolution (Sproat, 2001). Depiction rules covert the semantic representations

into a set of low-level depictors (representing 3D objects, poses, spatial

relations, colour attributes, etc.). Applied rules then resolve conflicts and

remove illegal depictors. The final 3D scene is generated using the remaining

depictors. Figure 2 (Coyne & Sproat, 2001) displays an example output of

WordsEye.

Figure 2: WordsEye “The lawn mower is 5 feet tall. John pushes the

lawn mower. The cat is 5 feet behind John. The cat is 10 feet tall.”

Carsim (Dupuy et al., 2001; Egges et al., 2001; Johansson et al., 2004) is an

automatic text-to-scene system capable of reading written police reports on

traffic accidents, and then automatically generate 3D animations from them. It

uses a number of natural language techniques such tokenizing, part-of-speech

Figure 1 3D scene generated by WordsEye [7] for the text “The lawn mower is 5 feet tall. John
pushes the lawn mower. The cat is 5 feet behind John. The cat is 10 feet tall.”.

1.1 Contributions
To our knowledge, this is the first paper to investigate inferring objects in a TTSCS using
Wikipedia as a source of world-knowledge. Our main results are as follows:

we demonstrate a system able to identify explicit objects using WordNet
we demonstrate a system able to infer implicit objects using Wikipedia

1.2 Paper outline
This paper is organised as follows. We detail related work in section 2. In section 3, we
discuss the limitations of the existing work and propose a solution that uses Wikipedia and
WordNet. This is followed in section 4 by a description of the Python implementation used
in the experiments. In the experiments in section 5 we show that explicit objects can be
identified and implicit objects can be inferred using our technique. Finally, we conclude the
paper and propose future work in section 6.

2 Related work

Often cited as the first TTSCS, SHRDLU [22] allows users to enter natural language
commands, which are reissued to a virtual robot arm which moves blocks around in a small
‘blocks world’. SHRDLU has a basic vocabulary of objects and properties, and basic semantics
for interpreting them and the environment to which they apply [20].

Following SHRDLU came two microworld systems (highly restricted sets of objects or
ideas that operate in accordance with a limited set of rules). The Clowns of Microworld
[18] processes user-commands concerning spatial descriptions of clowns and their actions
to generate a simple diagram of a scene. Similarly, NALIG (Natural Language Image
Generation) [1] takes sequences of descriptions regarding the spatial relations between objects
to generate a scene.

WordsEye [7] generates 3D scenes from user descriptions. WordsEye works by converting
a parse tree to a dependency representation, which is then converted into a semantic
representation. Depiction rules convert the semantic representations into a set of low-level
depictors (representing 3D objects, poses, spatial relations, colour attributes, etc). Conflicting
and illegal depictors are removed, and a final 3D scene is generated.

Carsim [8, 2, 9] takes textual police traffic accident reports and generates 3D animations
from them. It uses a number of natural language techniques such tokenising, part-of-speech

A. Cropper 21

tagging, noun group detection, and domain-specific multi-words to parse a report’s text into
a formal representation outlining what happened. Using temporal relations between the
events, Carsim is able to generate and then animate the scene.

Other TTSCSs include: [6] which also focuses on spatial relationships and uses restricted
keywords such as in, on, and at to manipulate spatial arrangements of existing objects within
a scene; [10] who propose an automatic text illustration system which automatically extracts
keywords from the text and matches these keywords to a database of pictures; [14] and [23]
who both present systems to generate pictures from a natural language text; and [4] who
focus on automatically translating natural language patient instructions into pictures.

Sproat [19] looks into inferring the environment in a TTSCS. For example, for the sentence
“John was eating breakfast”, Sproat tries to infer that the scene is taking place in a kitchen.
The system is able to match events such as ‘wash clothes’ to ‘laundry room’ and ‘wash hands’
to ‘bathroom’. However, the system does not attempt to populate matched rooms with
objects you would expect to find within them.

To our knowledge, the only other work that focuses on inferring implicit relations is [5],
who use an existing 3D scene database to create a spatial knowledge-base with priors on the
hierarchy of objects in scenes. Specifically, they parse the input text into a scene template,
which places constraints on what objects must be present and the relationships between them.
They then use the priors from the spatial knowledge-base to expand the scene template by
inferring additional implicit constraints. These implicit constraints are then used to select
objects from an object dataset.

3 Limitations and proposed solutions

Existing TTSCS tend to focus on extracting specific information from text, then matching
this information to a pre-determined and often basic vocabulary of objects and properties.
Once matched, most systems emphasise the spatial relationships of objects to position them
within a scene. To our knowledge, only one other paper [5] considers objects not explicitly
mentioned within the text. In addition, the majority of existing systems, including [5], ignore
the dynamic nature of natural language, and often the only dynamic content within these
systems are the heavily constrained, and in some cases, simple narratives supplied by the
user.

We propose that by first identifying explicit objects, we can then infer implicit objects.
For example, for the sentence “She placed the pen on the desk”, we suggest that we can
infer a chair by identifying the desk. However, exploring the semantic properties of a desk
suggests nothing concerning its relationship to a chair. A desk has draws, legs, and is a type
of table, but there is nothing in its semantic properties referring to its relationship to a chair.
Humans make this inference using world-knowledge. For a machine to perform this inference,
we need a machine-readable source of world-knowledge. In the following section, we describe
an approach to this problem using Wikipedia. This approach differs from [5] since we use
a dynamic source of world-knowledge which is adaptable to changes in natural language,
whereas [5] use a static database of objects collected from 133 small indoor scenes.

4 Implementation

We now describe the Python implementation of our system. We use the Natural Language
Toolkit [3] for the natural language processing tasks. Note that in this paper, we ignore the
problem of scene detection, i.e. we take a book already parsed into scenes as input. See [12]
for work on scene detection.

ICCSW’14

22 Identifying and inferring objects from textual descriptions of scenes from books

4.1 Object identification
The input to the system is a collection of scenes from a book, where each scene is a string.
For each scene, we identify nouns by tokenising and part-of-speech (POS) tagging [11] the
text. Plurals are singularised and word frequencies aggregated, so that each scene is reduced
to a set of nouns and associated frequencies.

Only extracting nouns is insufficient to identify objects. For example, in the sentence
“I went to the shop on Wednesday”, the word Wednesday is a noun, but not a physical
object. We use WordNet [15], a lexical semantic dictionary, to identify physical objects.
WordNet places words into one or more logical categories, of which there are 45, including
the following:

noun.artifact: denoting man-made objects
noun.communication: denoting communicative processes and contents
noun.location: denoting spatial position
noun.person: denoting people

We use the noun.artifact category to decide whether a word refers to a physical object.
A reader might question the need to POS tag the text if we use WordNet to identify

objects. POS tagging is necessary because words of the noun.artifact category can appear in
a scene but not as nouns. For example, in the sentence, “The politician wishes to table an
amendment to the proposal”, the word table is of the type noun.artifact but is used as a
verb, not an object.

As mentioned, WordNet places words into one or more logical categories. If a word is in
multiple categories, then WordNet orders the categories by estimated frequency of use1. For
example, the word mouth has eight entries in WordNet (entries 3-7 are omitted for brevity):

1. noun.body: mouth, oral cavity, oral fissure, rima oris (the opening through which food is
taken in and vocalizations emerge)

2. noun.body: mouth (the externally visible part of the oral cavity on the face and the
system of organs surrounding the opening)

8. noun.artifact: mouth (the opening of a jar or bottle)

Here, the noun.artifact category is the least likely interpretation. But how do we know
which interpretation corresponds to the sense of the word in the scene? To investigate this,
we checked WordNet for the 20 most frequent nouns in a chapter of a book (described in
section 5.1). We found that the correct interpretation of the word was in the first three results
returned by WordNet for 19 of the 20 words. Therefore, we only use the first three results to
decide whether a word refers to a object. Developing a more sophisticated approach, such as
using word-sense disambiguation, remains a topic for future work.

As a final step, we aggregate synonyms (identified using WordNet) to end with a set of
words and frequencies that potentially refer to objects in a scene.

4.2 Object inference
Having identified potential objects in a scene, the task is to infer implicit objects. To do
this, we look at the corresponding Wikipedia page for each potential object in a scene.
For example, if we identify the word chair as being a potential object, we look at the

1 https://wordnet.princeton.edu/wordnet/man/wn.1WN.html

A. Cropper 23

corresponding Wikipedia page for the word chair2. We extract the contents of the page using
the Wikipedia export pages3 and repeat the object identification steps described in section
4.1. Following this step, we have a set of words and frequencies that potentially relate to
objects in a scene.

4.3 Object ranking
We assign each object a score to reflect how important it is in a scene. This ensures that less
common items are represented in the scene. For example, we might assign the word clarinet
a higher score than the word chair because a clarinet is a less common object. The tfidf
(term-frequency inverse-document-frequency) weighting scheme [13] is used in information
retrieval and text mining to rank documents based on their similarity to a query. This scheme
assigns each word a value which increases proportionally to the number of times the word
appears in a document, but is offset by the frequency of the word in the corpus, which helps
to discriminate against words that generally appear more often than others. Specifically, in
the tfidf scheme, the term frequency component tf is calculated by summing the instances of
a term t in a document d. The document frequency component df is computed by dividing
the total number of documents n by the number of documents that term t occurs in d, then
taking the log of this value. These two values are multiplied to give the weighting for a term.
We use this weighting scheme to rank the objects in a scene. Specifically, we say that a scene
and its inferred objects form a document, and that the collection of all scenes forms the
corpus. The term frequency component is the frequency of an object in a document (scene),
and the document frequency component is the number of documents (scenes) in which each
object appears. Using this scheme, we run the object identification and object inference steps
for all scenes in our dataset and rank the objects using their tfidf score.

5 Experiments

The experiments investigate whether our system is able to identify and infer objects in a
scene.

5.1 Materials
In this paper, we work with unlabelled data, i.e. we are given a book and the task is to
identify and infer objects without any supervision. Therefore, the results must be evaluated
using intuition. Experimentation using labelled data is left for future work.

For the choice of textual material, we experimented with several texts, all in the public
domain. However, we found that the system often inferred anachronisms. Therefore, for the
following experiments, we use Corey Doctorow’s ‘Little Brother’4, chosen specifically due to
its modern content, e.g. it includes objects such as radio and Xbox.

5.2 Methods
For the experiments, the input is chapter 7 from Corey Doctorow’s ‘Little Brother’ manually
parsed into scenes. The output is a list of potential objects for each scene ordered by their
tfidf score.

2 http://en.wikipedia.org/wiki/Chair
3 http://en.wikipedia.org/wiki/Special:Export
4 http://craphound.com/littlebrother/download/

ICCSW’14

24 Identifying and inferring objects from textual descriptions of scenes from books

Table 1 Words and inferred related words ordered in descending order by tfidf.

keyboard telephone computer screen bed
key microphone machine computer mattress
computer receiver microprocessor panel box
typewriter coil telephone tube frame
screen handset transistor cathode bedding
keypad bell keyboard stand mortise
laptop telegraph disc keyboard cot
joystick candlestick webcam telephone bedpost

5.3 Results
We now describe the results for one scene from chapter 7 of Corey Doctorow’s ‘Little Brother’.
Results for other scenes are omitted for brevity.

5.3.1 Object identification
For the scene, we identified the following objects:

bed, computer, jail, camp, picture, telephone, room, ceiling, projector, wall, filter, screen,
microscope, bag, radar, keyboard

Most objects are present in the scene, but there are exceptions. For the sentence “If
anyone knew how to keep our butts out of jail, it would be him”, we incorrectly identified
that the word jail is an object in the scene. This example highlights a problem with using
the tfidf weighting scheme because the word jail was not in any other scene, and was thus
given a high weighting. In addition, we missed several objects. For example, the scene starts
with the sentence “I hooked up my Xbox as soon as I got to my room”. However, we did not
detect the word Xbox as an object because this word does not exist in WordNet. Neither
do many commonplace technological objects such as iPhone, iPod, Wii, Mac, etc. This is a
limitation of the work, i.e. we are restricted to objects in WordNet.

5.3.2 Object inference
Having identified explicit objects, the next task is to infer implicit objects. Table 1 shows a
sample of the results for this step where the column header is an explicit object identified
in the scene and row items are inferred objects, displayed in descending order by their tfidf
score. The results for keyboard are particularly good, with computer, laptop, and joystick all
inferred. In comparison, the results for telephone are less impressive, with objects such as
coil, telegraph, and candlestick inferred.

6 Conclusions and future work

In this paper, we have described a technique which uses Wikipedia and WordNet to identify
explicit objects and infer implicit objects from textual descriptions of a scenes from a book.
No known existing literature has attempted this. Our results show potential, and we are
able to infer implicit objects such as keyboard and screen by identifying explicit objects such
as computer.

A. Cropper 25

The main issue complicating the work is the ambiguity of natural language, which is a
common problem across all areas of natural language processing [11]. For example, when
identifying explicit objects from text, we did not disambiguate if an object was in the
scene or if it was just being discussed. Future work should integrate more sophisticated
natural language processing techniques to resolve such ambiguity, such as using word-sense
disambiguation techniques. In addition, we described an unsupervised learning technique.
In future work, it would be interesting to investigate whether a semi-supervised machine
learning approach would work.

References

1 Giovanni Adorni, Mauro Di Manzo, and Fausto Giunchiglia. Natural language driven
image generation. In Proceedings of the 10th international conference on Computational
linguistics, pages 495–500. Association for Computational Linguistics, 1984.

2 Ola Åkerberg, Hans Svensson, Bastian Schulz, and Pierre Nugues. Carsim: an automatic 3d
text-to-scene conversion system applied to road accident reports. In Proceedings of the tenth
conference on European chapter of the Association for Computational Linguistics-Volume
2, pages 191–194. Association for Computational Linguistics, 2003.

3 Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python. "
O’Reilly Media, Inc.", 2009.

4 Duy Bui, Carlos Nakamura, Bruce E Bray, and Qing Zeng-Treitler. Automated illustration
of patients instructions. In AMIA Annual Symposium Proceedings, volume 2012, page 1158.
American Medical Informatics Association, 2012.

5 Angel X Chang, Manolis Savva, and Christopher D Manning. Semantic parsing for text to
3d scene generation. ACL 2014, page 17, 2014.

6 Sharon Rose Clay and Jane Wilhelms. Put: Language-based interactive manipulation of
objects. Computer Graphics and Applications, IEEE, 16(2):31–39, 1996.

7 Bob Coyne and Richard Sproat. Wordseye: an automatic text-to-scene conversion sys-
tem. In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 487–496. ACM, 2001.

8 Sylvain Dupuy, Arjan Egges, Vincent Legendre, and Pierre Nugues. Generating a 3d
simulation of a car accident from a written description in natural language: The carsim
system. In Proceedings of the workshop on Temporal and spatial information processing-
Volume 13, page 1. Association for Computational Linguistics, 2001.

9 Richard Johansson, David Williams, Anders Berglund, and Pierre Nugues. Carsim: a
system to visualize written road accident reports as animated 3d scenes. In Proceedings
of the 2nd Workshop on Text Meaning and Interpretation, pages 57–64. Association for
Computational Linguistics, 2004.

10 Dhiraj Joshi, James Z Wang, and Jia Li. The story picturing engine—a system for auto-
matic text illustration. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMCCAP), 2(1):68–89, 2006.

11 Dan Jurafsky and James H Martin. Speech & language processing. Pearson Education
India, 2000.

12 Marie Louise Lingaya. Automatic scene extraction from natural language text. Master’s
thesis, Nottingham Trent University School of Science and Technology, UK, 2008.

13 Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to in-
formation retrieval, volume 1. Cambridge university press Cambridge, 2008.

14 Rada Mihalcea and Chee Wee Leong. Toward communicating simple sentences using
pictorial representations. Machine Translation, 22(3):153–173, 2008.

ICCSW’14

26 Identifying and inferring objects from textual descriptions of scenes from books

15 George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41, 1995.

16 K Onstad. Pixar gambles on a robot in love. http://www.nytimes.com/2008/06/22/
movies/22onst.html, 2008. Accessed: 25-06-2014.

17 J Reimer. Cross-platform game development and the next generation of consoles. http:
//arstechnica.com/old/content/2005/11/crossplatform.ars/7, 2005. Accessed: 25-
06-2014.

18 Robert F Simmons. The clowns microworld. In Proceedings of the 1975 workshop on The-
oretical issues in natural language processing, pages 17–19. Association for Computational
Linguistics, 1975.

19 Richard Sproat. Inferring the environment in a text-to-scene conversion system. In Pro-
ceedings of the 1st international conference on Knowledge capture, pages 147–154. ACM,
2001.

20 Daniel Allen Tappan. Knowledge-based spatial reasoning for automated scene generation
from text descriptions. PhD thesis, New Mexico State University, 2004.

21 Meng Wang. Research on the relationship between story and the popularity of animated
movies. Master’s thesis, Purdue University, United States, 2012.

22 Terry Winograd. Procedures as a representation for data in a computer program for un-
derstanding natural language. Technical report, DTIC Document, 1971.

23 Xiaojin Zhu, Andrew B Goldberg, Mohamed Eldawy, Charles R Dyer, and Bradley Strock.
A text-to-picture synthesis system for augmenting communication. In AAAI, volume 7,
pages 1590–1595, 2007.

http://www.nytimes.com/2008/06/22/movies/22onst.html
http://www.nytimes.com/2008/06/22/movies/22onst.html
http://arstechnica.com/old/content/2005/11/crossplatform.ars/7
http://arstechnica.com/old/content/2005/11/crossplatform.ars/7

	Introduction
	Contributions
	Paper outline

	Related work
	Limitations and proposed solutions
	Implementation
	Object identification
	Object inference
	Object ranking

	Experiments
	Materials
	Methods
	Results
	Object identification
	Object inference

	Conclusions and future work

